scholarly journals On solutions of linear fractional differential equations and systems thereof

2019 ◽  
Vol 22 (2) ◽  
pp. 479-494
Author(s):  
Khongorzul Dorjgotov ◽  
Hiroyuki Ochiai ◽  
Uuganbayar Zunderiya

Abstract We derive exact solutions to classes of linear fractional differential equations and systems thereof expressed in terms of generalized Wright functions and Fox H-functions. These solutions are invariant solutions of diffusion-wave equations obtained through certain transformations, which are briefly discussed. We show that the solutions given in this work contain previously known results as particular cases.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Wei Li ◽  
Huizhang Yang ◽  
Bin He

Based on Jumarie’s modified Riemann-Liouville derivative, the fractional complex transformation is used to transform fractional differential equations to ordinary differential equations. Exact solutions including the hyperbolic functions, the trigonometric functions, and the rational functions for the space-time fractional bidirectional wave equations are obtained using the(G′/G)-expansion method. The method provides a promising tool for solving nonlinear fractional differential equations.


2021 ◽  
Vol 22 ◽  
pp. 103916
Author(s):  
Haleh Tajadodi ◽  
Zareen A. Khan ◽  
Ateeq ur Rehman Irshad ◽  
J.F. Gómez-Aguilar ◽  
Aziz Khan ◽  
...  

Author(s):  
Tadeusz Jankowski

AbstractUsing the iterative method, this paper investigates the existence of a unique solution to systems of nonlinear fractional differential equations, which involve the right-handed Riemann-Liouville fractional derivatives $D^{q}_{T}x$ and $D^{q}_{T}y$. Systems of linear fractional differential equations are also discussed. Two examples are added to illustrate the results.


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 2078 ◽  
Author(s):  
Vasily E. Tarasov

In this article, two well-known standard models with continuous time, which are proposed by two Nobel laureates in economics, Robert M. Solow and Robert E. Lucas, are generalized. The continuous time standard models of economic growth do not account for memory effects. Mathematically, this is due to the fact that these models describe equations with derivatives of integer orders. These derivatives are determined by the properties of the function in an infinitely small neighborhood of the considered time. In this article, we proposed two non-linear models of economic growth with memory, for which equations are derived and solutions of these equations are obtained. In the differential equations of these models, instead of the derivative of integer order, fractional derivatives of non-integer order are used, which allow describing long memory with power-law fading. Exact solutions for these non-linear fractional differential equations are obtained. The purpose of this article is to study the influence of memory effects on the rate of economic growth using the proposed simple models with memory as examples. As the methods of this study, exact solutions of fractional differential equations of the proposed models are used. We prove that the effects of memory can significantly (several times) change the growth rate, when other parameters of the model are unchanged.


Sign in / Sign up

Export Citation Format

Share Document