Sobolev’s inequality for double phase functionals with variable exponents

2019 ◽  
Vol 31 (2) ◽  
pp. 517-527 ◽  
Author(s):  
Fumi-Yuki Maeda ◽  
Yoshihiro Mizuta ◽  
Takao Ohno ◽  
Tetsu Shimomura

AbstractOur aim in this paper is to establish generalizations of Sobolev’s inequality for double phase functionals {\Phi(x,t)=t^{p(x)}+a(x)t^{q(x)}}, where {p(\,{\cdot}\,)} and {q(\,{\cdot}\,)} satisfy log-Hölder conditions and {a(\,{\cdot}\,)} is nonnegative, bounded and Hölder continuous of order {\theta\in(0,1]}.

2019 ◽  
Vol 63 (2) ◽  
pp. 287-303
Author(s):  
Takao Ohno ◽  
Tetsu Shimomura

AbstractOur aim in this paper is to establish a generalization of Sobolev’s inequality for Riesz potentials $I_{\unicode[STIX]{x1D6FC}(\,\cdot \,),\unicode[STIX]{x1D70F}}f$ of order $\unicode[STIX]{x1D6FC}(\,\cdot \,)$ with $f\in L^{\unicode[STIX]{x1D6F7},\unicode[STIX]{x1D705},\unicode[STIX]{x1D703}}(X)$ over bounded non-doubling metric measure spaces. As a corollary we obtain Sobolev’s inequality for double phase functionals with variable exponents.


Author(s):  
TAKAO OHNO ◽  
TETSU SHIMOMURA

Our aim in this paper is to establish a generalization of Sobolev’s inequality for Riesz potentials $J_{\unicode[STIX]{x1D6FC}(\cdot )}^{\unicode[STIX]{x1D70E}}f$ of functions $f$ in Musielak–Orlicz–Morrey spaces $L^{\unicode[STIX]{x1D6F7},\unicode[STIX]{x1D705}}(X)$ . As a corollary we obtain Sobolev’s inequality for double phase functionals with variable exponents.


2021 ◽  
Vol 9 (1) ◽  
pp. 65-89
Author(s):  
Zhenzhen Yang ◽  
Yajuan Yang ◽  
Jiawei Sun ◽  
Baode Li

Abstract Let p(·) : ℝ n → (0, ∞] be a variable exponent function satisfying the globally log-Hölder continuous and let Θ be a continuous multi-level ellipsoid cover of ℝ n introduced by Dekel et al. [12]. In this article, we introduce highly geometric Hardy spaces Hp (·)(Θ) via the radial grand maximal function and then obtain its atomic decomposition, which generalizes that of Hardy spaces Hp (Θ) on ℝ n with pointwise variable anisotropy of Dekel et al. [16] and variable anisotropic Hardy spaces of Liu et al. [24]. As an application, we establish the boundedness of variable anisotropic singular integral operators from Hp (·)(Θ) to Lp (·)(ℝ n ) in general and from Hp (·)(Θ) to itself under the moment condition, which generalizes the previous work of Bownik et al. [6] on Hp (Θ).


2020 ◽  
Vol 197 ◽  
pp. 111827 ◽  
Author(s):  
Yoshihiro Mizuta ◽  
Eiichi Nakai ◽  
Takao Ohno ◽  
Tetsu Shimomura

2021 ◽  
Vol 47 (1) ◽  
pp. 23-37
Author(s):  
Yoshihiro Mizuta ◽  
Tetsu Shimomura

Our aim in this paper is to deal with boundary growth of spherical means of Sobolev functions of monotone type for the double phase functional \(\Phi_{p,q}(x,t) = t^{p} + (b(x) t)^{q}\) in the unit ball B of \(\mathbb{R}^n\), where \(1 < p < q < \infty\) and \(b(\cdot)\) is a non-negative bounded function on B which is Hölder continuous of order \(\theta \in (0,1]\).


2019 ◽  
Vol 9 (1) ◽  
pp. 710-728 ◽  
Author(s):  
Maria Alessandra Ragusa ◽  
Atsushi Tachikawa

Abstract The functionals of double phase type $$\begin{array}{} \displaystyle {\cal H} (u):= \int \left(|Du|^{p} + a(x)|Du|^{q} \right) dx, ~~ ~~~(q \gt p \gt 1,~~a(x)\geq 0) \end{array}$$ are introduced in the epoch-making paper by Colombo-Mingione [1] for constants p and q, and investigated by them and Baroni. They obtained sharp regularity results for minimizers of such functionals. In this paper we treat the case that the exponents are functions of x and partly generalize their regularity results.


2019 ◽  
Vol 63 (2) ◽  
pp. 304-317 ◽  
Author(s):  
Jian Tan

AbstractLet$p(\cdot ):\mathbb{R}^{n}\rightarrow (0,\infty )$be a variable exponent function satisfying the globally log-Hölder continuous condition. In this paper, we obtain the boundedness of paraproduct operators$\unicode[STIX]{x1D70B}_{b}$on variable Hardy spaces$H^{p(\cdot )}(\mathbb{R}^{n})$, where$b\in \text{BMO}(\mathbb{R}^{n})$. As an application, we show that non-convolution type Calderón–Zygmund operators$T$are bounded on$H^{p(\cdot )}(\mathbb{R}^{n})$if and only if$T^{\ast }1=0$, where$\frac{n}{n+\unicode[STIX]{x1D716}}<\text{ess inf}_{x\in \mathbb{R}^{n}}p\leqslant \text{ess sup}_{x\in \mathbb{R}^{n}}p\leqslant 1$and$\unicode[STIX]{x1D716}$is the regular exponent of kernel of$T$. Our approach relies on the discrete version of Calderón’s reproducing formula, discrete Littlewood–Paley–Stein theory, almost orthogonal estimates, and variable exponents analysis techniques. These results still hold for variable Hardy space on spaces of homogeneous type by using our methods.


Author(s):  
Anna Kh. Balci ◽  
Lars Diening ◽  
Mikhail Surnachev

Abstract Zhikov showed 1986 with his famous checkerboard example that functionals with variable exponents can have a Lavrentiev gap. For this example it was crucial that the exponent had a saddle point whose value was exactly the dimension. In 1997 he extended this example to the setting of the double phase potential. Again it was important that the exponents crosses the dimensional threshold. Therefore, it was conjectured that the dimensional threshold plays an important role for the Lavrentiev gap. We show that this is not the case. Using fractals we present new examples for the Lavrentiev gap and non-density of smooth functions. We apply our method to the setting of variable exponents, the double phase potential and weighted p-energy.


Sign in / Sign up

Export Citation Format

Share Document