Explicit presentation of an Iwasawa algebra: The case of pro-p Iwahori subgroup of SLn(ℤp)

2020 ◽  
Vol 32 (2) ◽  
pp. 319-338 ◽  
Author(s):  
Jishnu Ray

AbstractIwasawa algebras of compact p-adic Lie groups are completed group algebras with applications in number theory in studying class numbers of towers of number fields and representation theory of p-adic Lie groups. We previously determined an explicit presentation of the Iwasawa algebra for the first principal congruence kernel of Chevalley groups over {\mathbb{Z}_{p}} which were uniform pro-p groups in the sense of Dixon, du Sautoy, Mann and Segal. In this paper, for prime {p>n+1}, we determine the explicit presentation, in the form of generators and relations, of the Iwasawa algebra of the pro-p Iwahori subgroup of {\mathrm{GL}_{n}(\mathbb{Z}_{p})} which is not, in general, a uniform pro-p group.

2019 ◽  
Vol 5 (1) ◽  
pp. 495-498
Author(s):  
Özen Özer

AbstractDifferent types of number theories such as elementary number theory, algebraic number theory and computational number theory; algebra; cryptology; security and also other scientific fields like artificial intelligence use applications of quadratic fields. Quadratic fields can be separated into two parts such as imaginary quadratic fields and real quadratic fields. To work or determine the structure of real quadratic fields is more difficult than the imaginary one.The Dirichlet class number formula is defined as a special case of a more general class number formula satisfying any types of number field. It includes regulator, ℒ-function, Dedekind zeta function and discriminant for the field. The Dirichlet’s class number h(d) formula in real quadratic fields claims that we have h\left(d \right).log {\varepsilon _d} = \sqrt {\Delta} {\scr L} \left({1,\;{\chi _d}}\right) for positive d > 0 and the fundamental unit ɛd of {\rm{\mathbb Q}}\left({\sqrt d} \right) . It is seen that discriminant, ℒ-function and fundamental unit ɛd are significant and necessary tools for determining the structure of real quadratic fields.The focus of this paper is to determine structure of some special real quadratic fields for d > 0 and d ≡ 2,3 (mod4). In this paper, we provide a handy technique so as to calculate particular continued fraction expansion of integral basis element wd, fundamental unit ɛd, and so on for such real quadratic number fields. In this paper, we get fascinating results in the development of real quadratic fields.


Author(s):  
Loren D. Olson

One of the fundamental problems in algebraic number theory is the construction of units in algebraic number fields. Various authors have considered number fields which are parametrized by an integer variable. They have described units in these fields by polynomial expressions in the variable e.g. the fields ℚ(√[N2 + 1]), Nεℤ, with the units εN = N + √[N2 + l]. We begin this article by formulating a general principle for obtaining units in algebraic function fields and candidates for units in parametrized families of algebraic number fields. We show that many of the cases considered previously in the literature by such authors as Bernstein [2], Neubrand [8], and Stender [ll] fall in under this principle. Often the results may be obtained much more easily than before. We then examine the connection between parametrized cubic fields and elliptic curves. In §4 we consider parametrized quadratic fields, a situation previously studied by Neubrand [8]. We conclude in §5 by examining the effect of parametrizing the torsion structure on an elliptic curve at the same time.


Sign in / Sign up

Export Citation Format

Share Document