The word problem of ℤ n is a multiple context-free language

2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Meng-Che Ho

Abstract The word problem of a group {G=\langle\Sigma\rangle} can be defined as the set of formal words in {\Sigma^{*}} that represent the identity in G. When viewed as formal languages, this gives a strong connection between classes of groups and classes of formal languages. For example, Anīsīmov showed that a group is finite if and only if its word problem is a regular language, and Muller and Schupp showed that a group is virtually-free if and only if its word problem is a context-free language. Recently, Salvati showed that the word problem of {\mathbb{Z}^{2}} is a multiple context-free language, giving the first example of a natural word problem that is multiple context-free, but not context-free. We generalize Salvati’s result to show that the word problem of {\mathbb{Z}^{n}} is a multiple context-free language for any n.

2013 ◽  
Vol 24 (07) ◽  
pp. 1067-1082 ◽  
Author(s):  
YO-SUB HAN ◽  
SANG-KI KO ◽  
KAI SALOMAA

The edit-distance between two strings is the smallest number of operations required to transform one string into the other. The distance between languages L1and L2is the smallest edit-distance between string wi∈ Li, i = 1, 2. We consider the problem of computing the edit-distance of a given regular language and a given context-free language. First, we present an algorithm that finds for the languages an optimal alignment, that is, a sequence of edit operations that transforms a string in one language to a string in the other. The length of the optimal alignment, in the worst case, is exponential in the size of the given grammar and finite automaton. Then, we investigate the problem of computing only the edit-distance of the languages without explicitly producing an optimal alignment. We design a polynomial time algorithm that calculates the edit-distance based on unary homomorphisms.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert H. Gilman ◽  
Robert P. Kropholler ◽  
Saul Schleimer

Abstract Suppose that G is a finitely generated group and {\operatorname{WP}(G)} is the formal language of words defining the identity in G. We prove that if G is a virtually nilpotent group that is not virtually abelian, the fundamental group of a finite volume hyperbolic three-manifold, or a right-angled Artin group whose graph lies in a certain infinite class, then {\operatorname{WP}(G)} is not a multiple context-free language.


Author(s):  
Arturo Carpi ◽  
Flavio D’Alessandro

The problem of the commutative equivalence of context-free and regular languages is studied. Conditions ensuring that a context-free language of exponential growth is commutatively equivalent with a regular language are investigated.


2005 ◽  
Vol 16 (03) ◽  
pp. 423-440 ◽  
Author(s):  
HENNING BORDIHN ◽  
MARKUS HOLZER ◽  
MARTIN KUTRIB

We investigate the operation problem for linear and deterministic context-free languages: Fix an operation on formal languages. Given linear (deterministic, respectively) context-free languages, is the application of this operation to the given languages still a linear (deterministic, respectively) context-free language? Besides the classical operations, for which the linear and deterministic context-free languages are not closed, we also consider the recently introduced root and power operation. We show non-semi-decidability, to be more precise, we show completeness for the second level of the arithmetic hierarchy for all of the aforementioned operations, except for the power operation, if the underlying alphabet contains at least two letters. The result for the power operation solves an open problem stated in Theoret. Comput. Sci.314 (2004) 445–449.


10.37236/1944 ◽  
2005 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael H. Albert ◽  
Steve Linton ◽  
Nik Ruškuc

We introduce the insertion encoding, an encoding of finite permutations. Classes of permutations whose insertion encodings form a regular language are characterized. Some necessary conditions are provided for a class of permutations to have insertion encodings that form a context free language. Applications of the insertion encoding to the evaluation of generating functions for classes of permutations, construction of polynomial time algorithms for enumerating such classes, and the illustration of bijective equivalence between classes are demonstrated.


2007 ◽  
Vol 18 (06) ◽  
pp. 1293-1302 ◽  
Author(s):  
MARTIN KUTRIB ◽  
ANDREAS MALCHER

We investigate the intersection of Church-Rosser languages and (strongly) context-free languages. The intersection is still a proper superset of the deterministic context-free languages as well as of their reversals, while its membership problem is solvable in linear time. For the problem whether a given Church-Rosser or context-free language belongs to the intersection we show completeness for the second level of the arithmetic hierarchy. The equivalence of Church-Rosser and context-free languages is Π1-complete. It is proved that all considered intersections are pairwise incomparable. Finally, closure properties under several operations are investigated.


Sign in / Sign up

Export Citation Format

Share Document