scholarly journals Actions of the Braid Group, and New Algebraic Proofs of Results of Dehornoy and Larue

2009 ◽  
Vol 1 (1) ◽  
Author(s):  
Lluís Bacardit ◽  
Warren Dicks
Keyword(s):  
2020 ◽  
Vol 2020 (769) ◽  
pp. 87-119
Author(s):  
Sabin Cautis ◽  
Aaron D. Lauda ◽  
Joshua Sussan

AbstractRickard complexes in the context of categorified quantum groups can be used to construct braid group actions. We define and study certain natural deformations of these complexes which we call curved Rickard complexes. One application is to obtain deformations of link homologies which generalize those of Batson–Seed [3] [J. Batson and C. Seed, A link-splitting spectral sequence in Khovanov homology, Duke Math. J. 164 2015, 5, 801–841] and Gorsky–Hogancamp [E. Gorsky and M. Hogancamp, Hilbert schemes and y-ification of Khovanov–Rozansky homology, preprint 2017] to arbitrary representations/partitions. Another is to relate the deformed homology defined algebro-geometrically in [S. Cautis and J. Kamnitzer, Knot homology via derived categories of coherent sheaves IV, colored links, Quantum Topol. 8 2017, 2, 381–411] to categorified quantum groups (this was the original motivation for this paper).


2018 ◽  
Vol 27 (06) ◽  
pp. 1850043 ◽  
Author(s):  
Paul P. Gustafson

We show that any twisted Dijkgraaf–Witten representation of a mapping class group of an orientable, compact surface with boundary has finite image. This generalizes work of Etingof et al. showing that the braid group images are finite [P. Etingof, E. C. Rowell and S. Witherspoon, Braid group representations from twisted quantum doubles of finite groups, Pacific J. Math. 234 (2008)(1) 33–42]. In particular, our result answers their question regarding finiteness of images of arbitrary mapping class group representations in the affirmative. Our approach is to translate the problem into manipulation of colored graphs embedded in the given surface. To do this translation, we use the fact that any twisted Dijkgraaf–Witten representation associated to a finite group [Formula: see text] and 3-cocycle [Formula: see text] is isomorphic to a Turaev–Viro–Barrett–Westbury (TVBW) representation associated to the spherical fusion category [Formula: see text] of twisted [Formula: see text]-graded vector spaces. The representation space for this TVBW representation is canonically isomorphic to a vector space of [Formula: see text]-colored graphs embedded in the surface [A. Kirillov, String-net model of Turaev-Viro invariants, Preprint (2011), arXiv:1106.6033 ]. By analyzing the action of the Birman generators [J. Birman, Mapping class groups and their relationship to braid groups, Comm. Pure Appl. Math. 22 (1969) 213–242] on a finite spanning set of colored graphs, we find that the mapping class group acts by permutations on a slightly larger finite spanning set. This implies that the representation has finite image.


1994 ◽  
Vol 419 (3) ◽  
pp. 529-552 ◽  
Author(s):  
Ikuo Ichinose ◽  
Toshiyuki Ohbayashi

2008 ◽  
Vol 17 (01) ◽  
pp. 47-53 ◽  
Author(s):  
PING ZHANG

It is shown that for the braid group Bn(M) on a closed surface M of nonnegative Euler characteristic, Out (Bn(M)) is isomorphic to a group extension of the group of central automorphisms of Bn(M) by the extended mapping class group of M, with an explicit and complete description of Aut (Bn(S2)), Aut (Bn(P2)), Out (Bn(S2)) and Out (Bn(P2)).


2020 ◽  
Vol 283 ◽  
pp. 107398
Author(s):  
Krishnendu Gongopadhyay ◽  
Tatyana A. Kozlovskaya ◽  
Oleg V. Mamonov
Keyword(s):  

2000 ◽  
Vol 09 (08) ◽  
pp. 1005-1009
Author(s):  
Reinhard Häring-Oldenburg

We recast the braid-lift representation of Contantinescu, Lüdde and Toppan in the language of B-type braid theory. Composing with finite dimensional representations of these braid groups we obtain various sequences of finite dimensional multi-parameter representations.


1991 ◽  
Vol 50 (6) ◽  
pp. 1211-1218 ◽  
Author(s):  
A. M. Akimenkov
Keyword(s):  

1996 ◽  
Vol 11 (11) ◽  
pp. 899-913 ◽  
Author(s):  
N. FLEURY ◽  
M. RAUSCH DE TRAUBENBERG

A group theory justification of one-dimensional fractional supersymmetry is proposed using an analog of a coset space, just like the one introduced in 1-D supersymmetry. This theory is then gauged to obtain a local fractional supersymmetry, i.e. a fractional supergravity which is then quantized à la Dirac to obtain an equation of motion for a particle which is in a representation of the braid group and should describe alternative statistics. A formulation invariant under general reparametrization is given by means of a curved fractional superline.


Sign in / Sign up

Export Citation Format

Share Document