Steklov eigenvalue problem with a-harmonic solutions and variable exponents

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Belhadj Karim ◽  
Abdellah Zerouali ◽  
Omar Chakrone

AbstractUsing the Ljusternik–Schnirelmann principle and a new variational technique, we prove that the following Steklov eigenvalue problem has infinitely many positive eigenvalue sequences:\left\{\begin{aligned} &\displaystyle\operatorname{div}(a(x,\nabla u))=0&&% \displaystyle\phantom{}\text{in }\Omega,\\ &\displaystyle a(x,\nabla u)\cdot\nu=\lambda m(x)|u|^{p(x)-2}u&&\displaystyle% \phantom{}\text{on }\partial\Omega,\end{aligned}\right.where {\Omega\subset\mathbb{R}^{N}}{(N\geq 2)} is a bounded domain of smooth boundary {\partial\Omega} and ν is the outward unit normal vector on {\partial\Omega}. The functions {m\in L^{\infty}(\partial\Omega)}, {p\colon\overline{\Omega}\mapsto\mathbb{R}} and {a\colon\overline{\Omega}\times\mathbb{R}^{N}\mapsto\mathbb{R}^{N}} satisfy appropriate conditions.

Author(s):  
G. F. Roach ◽  
I. G. Stratis ◽  
A. N. Yannacopoulos

This chapter consists mainly of definitions and various properties (without proofs) of spaces and operators used in this book. It defines O as an open set in Rᶰ such that it is locally on one side of its boundary Γ‎ := δ‎O, which is supposed to be bounded and Lipschitz. The chapter is mainly focused on the case of N = 3. Further, without loss of generality, the chapter supposes that Γ‎ is connected (for otherwise, one could work separately at each connected component). Such a set O is referred to as ‘regular’ in what follows. Let n denote the outward unit normal vector to Γ‎. In addition, let Oₑ := Rᶰ∖Ō: By N₀ we denote the set N ∪ {0}.


Author(s):  
Peter Lewintan ◽  
Patrizio Neff

For $1< p<\infty$ we prove an $L^{p}$ -version of the generalized trace-free Korn inequality for incompatible tensor fields $P$ in $W^{1,p}_0(\operatorname {Curl}; \Omega ,\mathbb {R}^{3\times 3})$ . More precisely, let $\Omega \subset \mathbb {R}^{3}$ be a bounded Lipschitz domain. Then there exists a constant $c>0$ such that \[ \lVert{ P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}\leq c\,\left(\lVert{\operatorname{dev} \operatorname{sym} P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})} + \lVert{ \operatorname{dev} \operatorname{Curl} P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}\right) \] holds for all tensor fields $P\in W^{1,p}_0(\operatorname {Curl}; \Omega ,\mathbb {R}^{3\times 3})$ , i.e., for all $P\in W^{1,p} (\operatorname {Curl}; \Omega ,\mathbb {R}^{3\times 3})$ with vanishing tangential trace $P\times \nu =0$ on $\partial \Omega$ where $\nu$ denotes the outward unit normal vector field to $\partial \Omega$ and $\operatorname {dev} P : = P -\frac 13 \operatorname {tr}(P) {\cdot } {\mathbb {1}}$ denotes the deviatoric (trace-free) part of $P$ . We also show the norm equivalence \begin{align*} &\lVert{ P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}+\lVert{ \operatorname{Curl} P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}\\ &\quad\leq c\,\left(\lVert{P}\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})} + \lVert{ \operatorname{dev} \operatorname{Curl} P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}\right) \end{align*} for tensor fields $P\in W^{1,p}(\operatorname {Curl}; \Omega ,\mathbb {R}^{3\times 3})$ . These estimates also hold true for tensor fields with vanishing tangential trace only on a relatively open (non-empty) subset $\Gamma \subseteq \partial \Omega$ of the boundary.


2019 ◽  
Vol 71 (2) ◽  
pp. 417-435
Author(s):  
Mikhail A. Karpukhin

AbstractIn this paper we study spectral properties of the Dirichlet-to-Neumann map on differential forms obtained by a slight modification of the definition due to Belishev and Sharafutdinov. The resulting operator $\unicode[STIX]{x039B}$ is shown to be self-adjoint on the subspace of coclosed forms and to have purely discrete spectrum there. We investigate properties of eigenvalues of $\unicode[STIX]{x039B}$ and prove a Hersch–Payne–Schiffer type inequality relating products of those eigenvalues to eigenvalues of the Hodge Laplacian on the boundary. Moreover, non-trivial eigenvalues of $\unicode[STIX]{x039B}$ are always at least as large as eigenvalues of the Dirichlet-to-Neumann map defined by Raulot and Savo. Finally, we remark that a particular case of $p$-forms on the boundary of a $2p+2$-dimensional manifold shares many important properties with the classical Steklov eigenvalue problem on surfaces.


2019 ◽  
Vol 38 (4) ◽  
pp. 219-133
Author(s):  
Abdellah Zerouali ◽  
Belhadj Karim ◽  
Omar Chakrone ◽  
Abdelmajid Boukhsas

In the presentp aper, we study the existence and non-existence results of a positive solution for the Steklov eigenvalue problem driven by nonhomogeneous operator $(p,q)$-Laplacian with indefinite weights. We also prove that in the case where $\mu>0$ and with $1<q<p<\infty$ the results are completely different from those for the usua lSteklov eigenvalue problem involving the $p$-Laplacian with indefinite weight, which is retrieved when $\mu=0$. Precisely, we show that when $\mu>0$ there exists an interval of principal eigenvalues for our Steklov eigenvalue problem.


Analysis ◽  
2005 ◽  
Vol 25 (4) ◽  
Author(s):  
Alberto Ferrero ◽  
Filippo Gazzola ◽  
Tobias Weth

SummaryWe study the spectrum of a biharmonic Steklov eigenvalue problem in a bounded domain of R


Sign in / Sign up

Export Citation Format

Share Document