On tylosis ultrastructure in Quercus cerris L.

Holzforschung ◽  
2019 ◽  
Vol 73 (12) ◽  
pp. 1121-1123
Author(s):  
Mihály Bariska ◽  
Zoltán Pásztory ◽  
Zoltán Börcsök

Abstract A study of tylosis in European Turkey oak (Quercus cerris L.) shows correspondences in the formation of tyloses and of regular cell walls. The outer tylosis wall has a smooth, granular surface with simple perforations analogous to that of the primary wall of ordinary cells. The underlying wall stratum shows parallel oriented macro-fibrils, normally found in the secondary walls of regular cells. At the contact areas of tyloses, stabilizing seams can be observed. Various types of wall openings such as simple pits, blind pits and vestured pits were present. Also tylosis division was detected. The characteristics of parenchyma cell walls can be re-discovered in tyloses.

2019 ◽  
Vol 27 (01) ◽  
pp. 1950090
Author(s):  
HAIXIA YU ◽  
XIN PAN ◽  
WEIMING YANG ◽  
WENFU ZHANG ◽  
XIAOWEI ZHUANG

Bamboo material is widely used in outdoor applications. However, they are easily degraded when exposed to sunlight, their smooth surface will gradually turn to rough, and small cracks will appear and finally develop to large cracks. The paper presents a first-time investigation on the microstructure changes in the tangential section of Moso bamboo (Phyllostachys pubescens Mazel) radiated by artificial UV light. The results showed that the cracks mainly appeared at intercellular spaces of fibers where lignin content was high, the parenchyma cell walls and neighbor pits where the cell wall was very thin and more vulnerable than the other parts. In addition, the part of raised area and pit cavity tended to absorb more UV light radiation and showed more and larger cracks than the otherwhere. Cracks at the intercellular spaces of fibers were larger and bigger than those on the parenchyma cell walls. The cracks on the pits of the parenchyma cell walls normally appeared at one pit and then extended to the several surrounding pits. Bordered pits cavity showed more and larger cracks than the pits on the thin wall cells. The simple pits on the thick wall cells and the fiber cells were unaffected by UV radiation.


2011 ◽  
Vol 30 (12) ◽  
pp. 2195-2205 ◽  
Author(s):  
Kanna Sato ◽  
Asuka Kawamura ◽  
Tsukasa Obara ◽  
Shinya Kawai ◽  
Shinya Kajita ◽  
...  

Planta ◽  
2015 ◽  
Vol 242 (6) ◽  
pp. 1413-1424 ◽  
Author(s):  
Lloyd A. Donaldson ◽  
B. Nanayakkara ◽  
K. Radotić ◽  
D. Djikanovic-Golubović ◽  
A. Mitrović ◽  
...  

1978 ◽  
Vol 56 (20) ◽  
pp. 2550-2566 ◽  
Author(s):  
G. B. Ouellette

Plugging of certain vessels may occur in elm shortly after inoculation with the Dutch elm disease pathogen, Ceratocystis ulmi (Buism.) C. Moreau. Plugging components include fibrillar material of varying density and fungal cells traceable mostly to inoculated spores. Some material is similar to fungal cell contents, and indications of extrusion of the latter through ruptured or unruptured walls were obtained. Other material is also attributable to disintegrating fungal walls. Radioautographs obtained from samples treated with [6-3H]thymidine indicate significant labeling of fungal cell contents and of similar material, free.Similar fibrillar material, some labeled, is present within pit membranes, in adjacent parenchyma cell walls, and in periplasmic areas associated with retraction of the plasmalemma and with other cytoplasmic disturbances. Host vessel walls are also altered in the presence of some fibrillar material but apparently release only limited amounts of disintegration products into vessels.The possible implications of these observations are discussed in relation to current hypotheses on wilt diseases.


Sign in / Sign up

Export Citation Format

Share Document