Fluidization characteristics of wide-size-distribution particles in a gas-solid fluidized bed reactor

Author(s):  
Chaojie Li ◽  
Weiwen Wang ◽  
Xiuling Guo ◽  
Jihai Duan

AbstractFluidization characteristics of wide-size-distribution particles in the gas-solid fluidized bed reactor are investigated by applying experiment and computational fluid dynamics (CFD) methods. In this study, three types of narrow-cut particles and two sets of wide-size-distribution particles are used. A model considering particle size distribution is developed in the Eulerian frame, and good agreement between numerical results and experimental data is observed. The particle size distribution has an important effect on the average bed voidage. The axial particle diameter profiles along bed height have a “S” type feature. Minimum fluidization velocity is determined from the standard deviation of pressure fluctuations and bubble dynamics are analyzed based on power spectra. Results indicate that fine particle composition can reduce the minimum fluidization velocity of wide-size-distribution particle system and the bubble diameter in the fluidized bed.

Author(s):  
Sivakumar Venkatachalam ◽  
Kannan Kandasamy ◽  
Senthilkumar Kandasamy

The effect of superficial gas and liquid velocities and properties of solids on the minimum fluidization velocity and riser liquid holdup of a three-phase external loop air lift fluidized bed reactor was characterized using Newtonian and non-Newtonian systems. Water, 65% and 85% of glycerol and n-Butanol were used as Newtonian liquids and different concentrations of carboxymethyl cellulose (i.e. 0.2%, 0.5% and 1% CMC) were used as non-Newtonian liquids. Spherical glass beads, bearl saddles and rasching rings of different sizes were used as solid phases. The phase flow rates and properties of solid particles had significant effects on the hydrodynamic characteristics of the external loop air lift fluidized bed reactor, such as minimum fluidization velocity and riser liquid holdup. Unified correlations have been developed to estimate the minimum fluidization velocity and riser liquid holdup as a function of superficial phase velocities, properties of solid particles and physical properties of both Newtonian and non-Newtonian liquid systems. The predicting ability of the correlations were tested with the experimental data and found to be a good fit with an absolute average relative deviation (AARD) of ± 6.5 % and ± 7.8 % for minimum fluidization velocity and riser liquid holdup, respectively.


Sign in / Sign up

Export Citation Format

Share Document