Selective hydrogenation of light cycle oil for BTX and gasoline production purposes

Author(s):  
Eli H. Olmos-Cerda ◽  
Georgina C. Laredo ◽  
Patricia Pérez-Romo ◽  
Ricardo Águeda-Rangel ◽  
Alfonso García-López

Abstract The study of the best experimental conditions and catalyst for the hydrogenation (HYD) of light cycle oil (LCO) for upgrading purposes was carried out. The objective was to examine the ability of two commercial hydrotreatment (HDT) catalysts for selective aromatic saturation. The effect of the hydrotreatment operation parameters (temperature, pressure, liquid hourly space velocity, H2/HC ratio) on the sulfur and nitrogen contents and in the saturation of aromatic hydrocarbons was also investigated. The goal was to obtain the highest conversion to mono-aromatic hydrocarbons from this di-aromatic (naphthalene derivatives) type feedstock, and at the same time to get reasonable hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) performance to avoid contaminant hydrocarbons for the next step (usually hydrocracking, HCK). An appropriate hydrotreated product with the highest concentration of mono-aromatic derivatives, a minimum reduction on the total aromatic content, and suitable decrements of sulfur and nitrogen compounds, was achieved using a cobalt-molybdenum supported on alumina catalyst, at 330 °C, 5.5 MPa, and a liquid hourly space velocity of 1.1 h−1. Additionally, the kinetics of the HDA was studied, assuming a lump characterization into tri-, di- and mono-aromatic and aliphatic hydrocarbons, pseudo-first-order reaction rates between these conversions, and thermal losses and diffusional resistances to be undetectable.

2017 ◽  
Vol 68 (1) ◽  
pp. 35-39
Author(s):  
Raluca Elena Dragomir ◽  
Paul Rosca ◽  
Traian Juganaru

This paper presents options for increasing production of diesel fuel in a refinery by FCC light cycle oil (LCO) hydrotreating together with the straight run gas oil (SRGO). The experiments consist of hydrotreating mixtures of 10, 20% LCO and 90% and respectively 80% SRGO at 360, 380�C, two liquid hourly space velocity 0.9 h-1, 1.2 h-1, pressure 50 bar in the presence of two industrial catalyst type Co/Mo and NiMo. The research has focused on the influence of LCO/SRGO ratio, type of catalyst and hydrotreating conditions on diesel fuel quality compared with characteristics required by standard EN 590.


2012 ◽  
Vol 95 ◽  
pp. 8-15 ◽  
Author(s):  
Alazne Gutiérrez ◽  
José M. Arandes ◽  
Pedro Castaño ◽  
Martin Olazar ◽  
Astrid Barona ◽  
...  

2020 ◽  
Vol 352 ◽  
pp. 329-336 ◽  
Author(s):  
Youngseok Oh ◽  
Haeseong Noh ◽  
Hyojeong Park ◽  
Hwayeon Han ◽  
Thanh-Binh Nguyen ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
pp. 19-38
Author(s):  
Georgina C. Laredo ◽  
José L. García-Gutiérrez ◽  
Patricia Pérez-Romo ◽  
Eli H. Olmos-Cerda

AbstractCatalysts to produce the important petrochemicals like benzene, toluene, and xylene (BTX) from refinery feedstocks, like light cycle oil (LCO) are reviewed here by covering published papers using model mixtures and real feeds. Model compounds experiments like tetralin and naphthalene derivatives provided a 53–55% total BTX yield. Higher yields were never attained due to the inevitable gas formation and other C9+-alkylbenzenes formed. For tetralin, the best catalysts are those conformed by Ni, CoMo, NiMo, or NiSn over zeolite H-Beta. For naphthalene derivatives, the best catalysts were those conformed by W and NiW over zeolite H-Beta silylated. Real feeds produced a total BTX yield of up to 35% at the best experimental conditions. Higher yields were never reached due to the presence of other types of hydrocarbons in the feed which can compete for the catalytic sites. The best catalysts were those conformed by Mo, CoMo, or NiMo over zeolite H-Beta. Some improvements were obtained by adding ZSM-5 to the support or in mixtures with other catalysts.


2020 ◽  
Vol 10 (1) ◽  
pp. 21-34
Author(s):  
Georgina C. Laredo ◽  
Patricia Pérez-Romo ◽  
Ricardo Agueda-Rangel ◽  
Alfonso García-López

2019 ◽  
Vol 577 ◽  
pp. 86-98 ◽  
Author(s):  
Youngseok Oh ◽  
Jaeuk Shin ◽  
Haeseong Noh ◽  
Chanwoo Kim ◽  
Yong-Su Kim ◽  
...  

Author(s):  
Georgina C. Laredo ◽  
Ricardo Águeda-Rangel ◽  
Alfonso García-López ◽  
José Luis García-Gutiérrez ◽  
Eli Hazel Olmos-Cerda

AbstractThe effect of the chemical composition of the hydrotreated light cycle oil (HDT LCO) on the benzene, toluene, ethylbenzene, and xylene (BTEX) production by a hydrocracking (HCK) procedure, is presented. Six different types of HDT LCOs were obtained by submitting two types of LCOs to hydrotreating (HDT) with different catalysts and experimental conditions. The products were analyzed as mono-, di- and tri-aromatic compounds using the supercritical fluid chromatography (SFC) method (ASTM D5186). The HDT LCOs were subjected to HCK with a 50/50 in weight mixture of nickel-molybdenum on alumina (NiMo/Al2O3) and H-ZSM5 (NiMo/H-ZSM5, 50/50) at 375 °C, 7.5 MPa, 1.2 h−1, and 750 m3/m3 H2/Oil. The HCK products were analyzed by gas chromatography with a flame ionization detector (GC-FID) and divided into five groups: gas, light hydrocarbons (LHCs), BTEX, middle hydrocarbons (MHCs), and heavy hydrocarbons (HHCs).The results showed that the BTEX formation ranged from 27.0 to 29.8 wt.% and it did not show a significant dependence on the mono-aromatic (59.9 and 75.6 wt.%), total aromatic (61.1–84.2 wt.%) contents or MHCs conversion (58.3–64.3 wt.%) from the departing HDT LCO feedstock. This result implies that, contrary to previous expectations, the BTEX formation does not directly depend on the amounts of total or mono-aromatic compounds when departing from real feedstocks. A GC-PIONA (paraffin, isoparaffin, olefin, naphthene, aromatic) characterization method (ASTM D6623) for mechanism understanding purpose was also carried out.


Fuel ◽  
2021 ◽  
Vol 292 ◽  
pp. 120364
Author(s):  
Peipei Miao ◽  
Xiaolin Zhu ◽  
Yangling Guo ◽  
Jie Miao ◽  
Mengyun Yu ◽  
...  

Author(s):  
Wanpeng Hu ◽  
Haiping Zhang ◽  
Min Wang ◽  
Jianglong Pu ◽  
Kyle Rogers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document