The Study of Switching Overvoltages under Power System Restoration Scenario Using Extended Delta-Bar-Delta Algorithm

2013 ◽  
Vol 14 (3) ◽  
pp. 219-230 ◽  
Author(s):  
Iman Sadeghkhani ◽  
Abbas Ketabi ◽  
Rene Feuillet

Abstract This paper presents an intelligent approach to evaluate switching overvoltages during power equipment energization. Switching action is one of the most important issues in power system restoration schemes. This action may lead to overvoltages that can damage some equipment and delay ‎power system restoration. In this work, transient overvoltages caused by power equipment energization are analyzed and estimated using artificial neural network (ANN)-based approach. Three learning algorithms, delta-bar-delta (DBD), extended delta-bar-delta (EDBD), and directed random search (DRS), were used to train the ANNs. In the cases of transformer and shunt reactor energization, ANNs are trained with the worst case scenario of switching angle and remanent flux which reduce the number of required simulations for training ANN. Also, for achieving good generalization capability for developed ANN, equivalent parameters of the network are used as ANN inputs. The simulated results for a partial of 39-bus New England test system, ‎show that the proposed technique can estimate the peak values and ‎duration of switching overvoltages with good accuracy and EDBD algorithm presents best performance.

2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Iman Sadeghkhani ◽  
Abbas Ketabi ◽  
Rene Feuillet

This paper presents an approach to the study of switching overvoltages during power equipment energization. Switching action is one of the most important issues in the power system restoration schemes. This action may lead to overvoltages which can damage some equipment and delay power system restoration. In this work, switching overvoltages caused by power equipment energization are evaluated using artificial-neural-network- (ANN-) based approach. Both multilayer perceptron (MLP) trained with Levenberg-Marquardt (LM) algorithm and radial basis function (RBF) structure have been analyzed. In the cases of transformer and shunt reactor energization, the worst case of switching angle and remanent flux has been considered to reduce the number of required simulations for training ANN. Also, for achieving good generalization capability for developed ANN, equivalent parameters of the network are used as ANN inputs. Developed ANN is tested for a partial of 39-bus New England test system, and results show the effectiveness of the proposed method to evaluate switching overvoltages.


Author(s):  
Iman Sadeghkhani ◽  
Abbas Ketabi ◽  
Rene Feuillet

Abstract In this paper an intelligent-based approach is introduced to evaluate harmonic overvoltages during three-phase transformer energization. In a power system that appears in an early stage of a black ‎start of a power system, an overvoltage could be caused by core ‎saturation on the energization of a three-phase transformer with residual flux. ‎Such an overvoltage might damage some equipment and delay ‎power system restoration. A new approach based on worst case determination is proposed to reduce time-domain simulations. Also, an artificial neural network (ANN) has been used to estimate the temporary overvoltages (TOVs) due to three-phase transformer ‎energization. ‎ Three learning algorithms, delta-bar-delta (DBD), extended delta-bar-delta (EDBD), and directed random search (DRS), were used to train the ANNs. ANN Training is performed based on equivalent circuit parameters of the network; thus trained ANN is applicable to every studied system. The ‎developed ANN is trained with the worst case of the switching condition and remanent flux, and ‎tested for typical cases. The simulated results for a partial of 39-bus New England test system, ‎show that the proposed technique can estimate the peak values and ‎durations of switching overvoltages with good accuracy and EDBD algorithm presents best performance.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Iman Sadeghkhani ◽  
Abbas Ketabi ◽  
Rene Feuillet

One of the most important issues in power system restoration is overvoltages caused by transformer switching. These overvoltages might damage some equipment and delay power system restoration. This paper presents a radial basis function neural network (RBFNN) to study transformer switching overvoltages. To achieve good generalization capability for developed RBFNN, equivalent parameters of the network are added to RBFNN inputs. The developed RBFNN is trained with the worst-case scenario of switching angle and remanent flux and tested for typical cases. The simulated results for a partial of 39-bus New England test system show that the proposed technique can estimate the peak values and duration of switching overvoltages with good accuracy.


2013 ◽  
Vol 14 (3) ◽  
pp. 231-238
Author(s):  
Iman Sadeghkhani ◽  
Abbas Ketabi ◽  
Rene Feuillet

Abstract Overvoltages caused by switching operation of power system equipments might damage some equipment and delay power system restoration. This paper presents a comparison between transmission line (TL) models for overvoltages study and investigates which TL model is most proper for every case study. Both simulation time and accuracy factors of TL models are considered for selecting best TL model. Various cases of switching of transformer, shunt reactor, capacitor bank, and transmission line are investigated and simulation results for a partial of 39-bus New England test system, ‎show that the proposed TL model evaluation increase accuracy and reduce simulation time (accelerate power system restoration) properly.


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
A. Ketabi ◽  
R. Feuillet

Generators startup sequence plays a significant role in achieving a suitable and effective restoration strategy. This paper outlines an ant colony search algorithm in order to determine the generator starting times during the bulk power system restoration. The algorithm attempts to maximize the system generation capability over a restoration period, where the dynamic characteristics of different types of units and system constraints are considered. Applying this method for the 39-bus New England test system, and comparing the results with backtracking-search and P/t methods, it is found that proposed algorithm improved generation capability.


2022 ◽  
Author(s):  
AYODEJI AKINYEMI ◽  
Kabeya Musasa ◽  
Innocent Davidson

Abstract The increasing penetration levels of Renewable Distributed Generation (RDG) into power system have proven to bring both positive and negative impacts. The occurrence of under voltage at the far end of a conventional Distribution Network (DN) may not raise concern anymore with RDGs integration into the power system. However, a high penetration of RDG into power system may cause problems such as voltage rise or over-voltage and reverse power flows at the Point of Common Coupling (PCC) between RDG and DN. This research paper presents the voltage rise and reverse power flow effects in power system with high concentration of RDG. The analysis is conducted on a sample DN, i.e., IEEE 13-bus test system, with RDG by considering the most critical scenario such as low power demand and peak power injection to DN from RDG. The Simulations are carried out using MATLAB/Simulink software, a mathematical model of a distribution grid, integrating RDG is developed for studying the effects of voltage rise and bidirectional flow of power. Furthermore, a control strategy is proposed to be installed at PCC of the DN to control/or mitigate the voltage rise effects and to limit the reverse power flow when operating in a worst critical scenario of minimum load and maximum generation from RDG. The proposed control strategy also mitigates the voltage-current harmonic signals, improve the power factor, and voltage stability at PCC. Finally, recommendations are provided for the utility and independent power producer to counteract the effects of voltage rise at PCC. The study demonstrated that, PCC voltage can be sustained with a high concentration of RDG during a worst-case scenario without a reverse power flow and voltage rise beyond grid code limits.


Sign in / Sign up

Export Citation Format

Share Document