DG Planning with Amalgamation of Operational and Reliability Considerations

2016 ◽  
Vol 17 (2) ◽  
pp. 131-141 ◽  
Author(s):  
Neelakanteshwar Rao Battu ◽  
A. R. Abhyankar ◽  
Nilanjan Senroy

Abstract Distributed Generation has been playing a vital role in dealing issues related to distribution systems. This paper presents an approach which provides policy maker with a set of solutions for DG placement to optimize reliability and real power loss of the system. Optimal location of a Distributed Generator is evaluated based on performance indices derived for reliability index and real power loss. The proposed approach is applied on a 15-bus radial distribution system and a 18-bus radial distribution system with conventional and wind distributed generators individually.

Author(s):  
S. Bhongade ◽  
Sachin Arya

The work presented in this paper is carried out with the objective of identifying the optimal location and size (Kvar ratings) of shunt capacitors to be placed in radial distribution system, to have overall economy considering the saving due to energy loss minimization. To achieve this objective, a two stage methodology is adopted in this paper. In the first stage, the base case load flow of uncompensated distribution system is carried out. On the basis of base case load flow solution, Nominal voltage magnitudes and Loss Sensitivity Factors are calculated and the weak buses are selected for capacitor placement.In the second stage, Particle Swarm Optimization (PSO) algorithm is used to identify the size of the capacitors to be placed at the selected buses for minimizing the power loss. The developed algorithm is tested for 10-bus, 34-bus and 85-bus Radial Distribution Systems. The results show that there has been an enhancement in voltage profile and reduction in power loss thus resulting in much annual saving.


Distributed generation system penetration in the existing distribution system is done for minimizing the losses and improving the voltage profile. There are total five types of distributed generation systems exist based on their power delivery like distributed generation system injecting real and reactive power, supplying real power only, supplying reactive power only, absorbing reactive power only , supplying real power and absorbing reactive power. All these five types of distributed generation systems have different penetration effects on the radial distribution system. We get different voltage profiles and power losses for different types of distributed generation systems. The testing of these five types of distributed generation systems will be done on IEEE 33 bus radial distribution system. For computing, the line parameters and power losses of the above testing system the forward-backward sweep load flow method will be applied


2019 ◽  
Vol 8 (1) ◽  
pp. 47-66 ◽  
Author(s):  
Mahesh Kumar ◽  
Bhagwan Das ◽  
Mazhar Hussain Baloch ◽  
Perumal Nallagownden ◽  
Irraivan Elamvazuthi ◽  
...  

The electricity demand increment, fossil fuel depletion, and environmental degradation open the interest of power utilities to utilize the distributed generation (DG) and distributed-static compensator (DSTATCOM) in the distribution system. The optimal placement and sizing of these generations have positive benefits, whereas non-optimal placement and size may worsen the existing operational characteristics of the distribution system. Therefore, this article presents a new methodology for optimal placement and sizing of distributed generation and distributed-static compensator in a radial distribution system. Moreover, a short-term planning has been made for power loss reduction with existing and increased load growth using particle swarm optimization (PSO) algorithm. The performance of proposed methodology is tested using different case studies on standard IEEE 33 bus system (RDS). The measured results are also compared with other literature methods and it is revealed that the proposed method gives more significant results.


2020 ◽  
Vol 8 (6) ◽  
pp. 2393-2398

The aim of reducing power loss, enhancing profile of voltage in a radial distribution system at which consumers are connected and also determining the ratings of power, optimal placement of Distributed generator. In this paper to resolve the drop in voltage profile by using network reconfiguration that gives possible switching possibilities with an efficient Cuckoo Search Algorithm (CSA) is discussed and Sensitivity analysis are carried out simultaneously for finding sizing and possible location of distributed generation. To confirm the usefulness of the discussed method it was conducted on radial distribution system of 33 bus connected by various load levels, the result shows that the discussed method is fast and efficient. However to meet power requirement and lack of transmission capabilities importance for DG is rapidly evolving in electrical systems. For reliability and stability for the power system best possible location of Distributed Generator is needed in distribution system. To overcome the shortcomings of mathematical optimization practices, soft computing algorithms have been actively introduced during the last decade.


2017 ◽  
Vol 2 (1) ◽  
pp. 6
Author(s):  
Souhaib Remha

In this paper, a novel optimization algorithm is presented for optimal location and sizing of Distributed Generation (DG) units on distribution systems. For this purpose, a recently based meta-heuristic called Firefly Algorithm (FA) has been employed to minimize the total active power losses. The results show a considerable improved in voltage profiles of all the buses and enhance the voltage stability index. The investigations were tested on IEEE 33 bus radial distribution system. Simulation results demonstrate the effectiveness of firefly algorithm. Comparison with another method is also given.


Reconfiguration is a process that supports to eliminate the power loss from a distribution network and this process have the capability to reduce the losses up to a specific point. Additionally, loss minimization may be calculated through the presentation of Distributed Generation (DG) units. Conversely, the incorporation of DG into the distribution network at an improper position may cause higher in losses and fluctuations in voltage. In the meantime, the uncertainty in voltage may produce partial power failure in the system. For that reason, it is essential to deliberate the stability boundaries in DGs position and sizing in the Radial Distribution System (RDS). In this research paper, hybrid Binary Particle Swarm Optimization (BPSO) with Flower Pollination Algorithm (FPA) is proposed for the ideal reconfiguration process and placing the DG in the 69-bus RDS. BPSO is applied to identify the best DG reconfiguration and FPA is proposed to determine the optimal DG size. This technique narrowly changes the DG location in every load bus of the network that delivers the minimum value of the objective function, which is considered as the finest candidate for DG connection. The simulation outcomes indicate the proposed method is more effective in reducing the power loss from 224.9804 to 27.2183 KW with the reduction of 88.8972% when compared to existing algorithm


Sign in / Sign up

Export Citation Format

Share Document