hybrid techniques
Recently Published Documents


TOTAL DOCUMENTS

436
(FIVE YEARS 169)

H-INDEX

24
(FIVE YEARS 7)

Author(s):  
Dhanashree S. Kulkarni ◽  
Sunil S. Rodd

Sentiment Analysis (SA) has been a core interest in the field of text mining research, dealing with computational processing of sentiments, views, and subjective nature of the text. Due to the availability of extensive web-based data in Indian languages such as Hindi, Marathi, Kannada, Tamil, and so on. It has become extremely significant to analyze this data and recover valuable and relevant information. Hindi being the first language of the majority of the population in India, SA in Hindi has turned out to be a critical task particularly for companies and government organizations. This research portrays a systematic review specifically in the field of Hindi SA. The major contribution of this article includes the categorization of numerous articles based on techniques that have attracted researchers in performing SA tasks in Hindi language. This survey classifies these state-of-the-art computational intelligence techniques into four major categories namely lexicon-based techniques, machine learning techniques, deep learning techniques, and hybrid techniques. It discusses the importance of these techniques based on different aspects such as their impact on the issues of SA, levels of analysis, and performance evaluation measures. The research puts forward a comprehensive overview of the majority of the work done in Hindi SA. This study will help researchers in finding out resources such as annotated datasets, linguistic resources, and lexical resources. This survey delivers some significant findings and presents overall future research directions in the field of Hindi SA.


Author(s):  
C. Sapna Kumari ◽  
C. N. Asha ◽  
U. Rajashekhar ◽  
K. Viswanath

At present, due to the various hacking approaches, the protection for any data transmitted through any channel or mode is one of the important issues. Nowadays, providing data security is satisfactory, developments are extended for obtaining data among the transceivers. Security level depends on the size of a symmetric key which is employed for encryption and decryption using various cryptography systems management and in modern approaches like block and RF codes including AES use a larger size of key simultaneously and there exists security problems due to hacking approaches. To illustrate the protection level and hacking problems, a new ECC is presented as well as by employing scalar duplication, the synchronous key is generated and consists of point doubling and point addition. The created focuses are encrypted before transmission by using ECC-Elgamal-Holomorphic (ECCEH) and transferred through a distant channel and encipher data is failed at the receiver using ECCEH which includes the reverse process. The unique standards of cryptography context have been generated by MATLAB; the defined framework has endeavored to the extent that speed, delay as well as control, and many others are accepted in MATLAB 2017a. The user of the sender, the original information is transformed into integer value by employing Holomorphic and encodes it by utilizing the Elgamal ECC algorithm which employs point doubling and point addition. The encoded information is uploaded into the cloud for storage, here www.thingspeak.com is utilized for storage. When the user presents at the receiver request the cloud to access from it, initially the cloud server authenticates the access control strategies of the requester, and then access is provided by the cloud server. If the user authenticates the strategies, then encoded data can download and the original data is decoded by synchronous key employing ECC- Elgamal algorithm. Using original and decrypted data, various performance factors are calculated in terms of execution time, packet delivery ratio, throughput, latency and compare these results with conventional methods and found to be 12%, 31%, 24%, and 8% progress concerned with packet delivery ratio, latency, outturn and execution time.


Author(s):  
Przemysław Prządka ◽  
Bartłomiej Liszka ◽  
Agnieszka Antończyk ◽  
Ludwika Gąsior ◽  
Zdzisław Kiełbowicz

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Qizhou Wang ◽  
Maksim Makarenko ◽  
Arturo Burguete Lopez ◽  
Fedor Getman ◽  
Andrea Fratalocchi

Abstract Nanophotonics inverse design is a rapidly expanding research field whose goal is to focus users on defining complex, high-level optical functionalities while leveraging machines to search for the required material and geometry configurations in sub-wavelength structures. The journey of inverse design begins with traditional optimization tools such as topology optimization and heuristics methods, including simulated annealing, swarm optimization, and genetic algorithms. Recently, the blossoming of deep learning in various areas of data-driven science and engineering has begun to permeate nanophotonics inverse design intensely. This review discusses state-of-the-art optimizations methods, deep learning, and more recent hybrid techniques, analyzing the advantages, challenges, and perspectives of inverse design both as a science and an engineering.


Author(s):  
Karunakaran Balaji ◽  
Velayudham Ramasubramanian

Abstract Aim: This study compares three different hybrid plans, for left-sided chest wall (CW) and nodal stations irradiation using a hypofractionated dose regimen. Materials and methods: Planning target volumes (PTVs) of 25 breast cancer patients that included CW, supraclavicular (SCL) and internal mammary node (IMN) were planned with 3 different hybrid techniques: 3DCRT+IMRT, 3DCRT+VMAT and IMRT+VMAT. All hybrid plans were generated with a hypofractionated dose prescription of 40·5 Gy in 15 fractions. Seventy per cent of the dose was planned with the base-dose component and remaining 30% of the dose was planned with the hybrid component. All plans were evaluated based on the PTVs and organs at risk (OARs) dosimetric parameters. Results: The results for PTVs parameters have shown that the 3DCRT+IMRT and 3DCRT+VMAT plans were superior in uniformity index to the IMRT+VMAT plan. The OARs dose parameters were comparable between hybrid plans. The IMRT+VMAT plan provided a larger low dose volume spread to the heart and ipsilateral lung (p < 0·001). The 3DCRT+VMAT plan required less monitor units and treatment time (p = 0·005) than other plans. Conclusion: The 3DCRT+VMAT hybrid plan showed superior results with efficient treatment delivery and provide clinical benefit by reducing both low and high dose levels.


Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 629
Author(s):  
Jinsong Liao ◽  
Panagiotis G. Asteris ◽  
Liborio Cavaleri ◽  
Ahmed Salih Mohammed ◽  
Minas E. Lemonis ◽  
...  

An accurate estimation of the axial compression capacity of the concrete-filled steel tubular (CFST) column is crucial for ensuring the safety of structures containing them and preventing related failures. In this article, two novel hybrid fuzzy systems (FS) were used to create a new framework for estimating the axial compression capacity of circular CCFST columns. In the hybrid models, differential evolution (DE) and firefly algorithm (FFA) techniques are employed in order to obtain the optimal membership functions of the base FS model. To train the models with the new hybrid techniques, i.e., FS-DE and FS-FFA, a substantial library of 410 experimental tests was compiled from openly available literature sources. The new model’s robustness and accuracy was assessed using a variety of statistical criteria both for model development and for model validation. The novel FS-FFA and FS-DE models were able to improve the prediction capacity of the base model by 9.68% and 6.58%, respectively. Furthermore, the proposed models exhibited considerably improved performance compared to existing design code methodologies. These models can be utilized for solving similar problems in structural engineering and concrete technology with an enhanced level of accuracy.


Sign in / Sign up

Export Citation Format

Share Document