A Novel Load Shedding Scheme for Voltage Stability

2016 ◽  
Vol 17 (6) ◽  
pp. 649-661 ◽  
Author(s):  
Sunil S. Damodhar ◽  
S. Krishna

Abstract Undervoltage load shedding serves to maintain voltage stability when a majority of loads are fast acting. An undervoltage load shedding scheme should address two tasks: the detection of voltage instability following a large disturbance and the determination of the amount of load to be shed. Additionally, in case of short-term voltage instability, the scheme should be fast. This paper proposes a method to predict voltage instability arising due to a large disturbance. The amount of load to be shed to maintain voltage stability is then determined from the Thevenin equivalent of the network as seen from the local bus. The proposed method uses local measurements of bus voltage and power, and does not require knowledge of the network. The method is validated by simulation of three test systems subjected to a large disturbance. The proposed scheme is fairly accurate in estimating the minimum amount of load to be shed to maintain stability. The method is also successful in maintaining stability in cases where voltage collapse is detected at multiple buses.

2018 ◽  
Vol 12 (11) ◽  
pp. 2530-2538 ◽  
Author(s):  
Javad Modarresi ◽  
Eskandar Gholipour ◽  
Amin Khodabakhshian

Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 277 ◽  
Author(s):  
Yunhwan Lee ◽  
Hwachang Song

This study develops an analytical method for assessing the voltage stability margins of a decentralized load shedding scheme; it then examines the challenges related to the existing load shedding scheme. It also presents a practical application for implementing the proposed method, based on the synchrophasor measurement technology in modern power grid operations. By applying the concept of a continuously-computed voltage stability margin index to the configuration of the Thévenin equivalent system, the maximum transfer power could be used as an index to monitor the voltage instability phenomenon and thus determine the required load shedding amount. Thus, the calculated voltage stability margin might be a useful index for system operators in the critical decision-making process of load shedding. Dynamic simulations are performed on real Korean power systems as case studies. Simulation results, when comparing the existing and proposed methods, showed that there was a considerable reduction in the amount of load shedding in the voltage instability scenario. This indicates that the synchrophasor measurement technology has a considerable effect on the proposed load shedding method. The simulation results have validated the performance of the proposed method.


2019 ◽  
Vol 49 (4) ◽  
pp. 225-232
Author(s):  
Jaime Dwaigth Pinzon Casallas ◽  
D. G. Colomé

This paper presents a novel methodology to identify critical contingencies that produce short-term voltage stability problems (STVS). The proposed methodology classifies the state of the pow-er system for each contingency, assessing the voltage stability of the post-contingency dynamic response from the calculation of the maximal Lyapunov expo-nent (MLE) and dynamic voltage indices at each bus and the whole system. In order to determine the crit-ical contingencies, the values of the indices and the results of the classification of the post-contingency state are statistically analysed. The methodology is tested in the New England 39-bus system, obtaining satisfactory results in relation to the identification not only of the most critical contingencies but also of vulnerable buses to voltage instability. New contri-butions of this work are the contingency classifica-tion methodology, the algorithm for calculating dy-namic indices and the method of classification of the operating state as a function of the STVS problem magnitude.


Sign in / Sign up

Export Citation Format

Share Document