A Multi-criteria Approach for Distribution Network Expansion Through Pooled MCDEA and Shannon Entropy

Author(s):  
Mandhir Kumar Verma ◽  
Vinod Kumar Yadav ◽  
Vivekananda Mukherjee ◽  
Santosh Ghosh

Abstract Power distribution network expansion planning (DNEP), based on innovative load flow analysis and optimization techniques, has drawn great attention of researchers around the world to cater for ever increasing demand of electrical power. In the present work, a new approach based on Multi-criteria Data Envelopment Analysis and Shannon Entropy analysis (MCDEA-SEA) is presented that strengthens the solution hunt process of DNEP problems. In the first stage of proposed methodology, various probable configurations are determined through load flow analysis considering different objective functions and constraints. In the next stage, large amount of complex data sets generated for various configurations from power flow perusal, then analyzed using pooled MCDEA-SEA. This multi-stage approach expedites search for best and impeccable solution, which leaves no space for sub-optimality. The efficacy of the proposed method has been verified by applying it on IEEE 33-bus test distribution system, considering impending load scenarios and the results show that the proposed methodology can effectively solve DNEP problem and provide optimal solution for DNEP problems, consuming lesser computation time compared to conventional approaches.

2020 ◽  
Vol 12 (1) ◽  
pp. 70-83
Author(s):  
Shabbiruddin ◽  
Sandeep Chakravorty ◽  
Karma Sonam Sherpa ◽  
Amitava Ray

The selection of power sub-station location and distribution line routing in power systems is one of the important strategic decisions for both private and public sectors. In general, contradictory factors such as availability, and cost, affects the appropriate selection which adheres to vague and inexact data. The work presented in this research deals with the development of models and techniques for planning and operation of power distribution system. The work comprises a wider framework from the siting of a sub-station to load flow analysis. Work done also shows the application of quantum- geographic information system (Q-GIS) in finding load point coordinates and existing sub-station locations. The proposed integrated approach provides realistic and reliable results, and facilitates decision makers to handle multiple contradictory decision perspectives. To accredit the proposed model, it is implemented for power distribution planning in Bihar which consists of 9 divisions. A Cubic Spline Function-based load flow analysis method is developed to validate the proposal.


Author(s):  
Muhamad Najib Kamarudin ◽  
Tengku Juhana Tengku Hashim ◽  
AbdulHamid Musa

<span>Distributed generation (DG) plays an important role in improving power quality as well as system realibility. As the incorporation of DG in the power distribution network creates several problems to the network operators, locating a suitable capacity and placement for DG will essentially help to improve the quality of power delivery to the end users. This paper presents the simulation of an application of firefly algorithm (FA) for optimally locating the most suitable placement and capacity of distributed generation (DG) in IEEE 33-bus radial distribution network. This strategy aims at minimizing losses together with improving the voltage profile in distribution network. The losses in real power and voltages at each bus are obtained using load flow analysis which was performed on an IEEE 33-bus radial distribution network using forward sweep method.  The proposed method comprises of simulation of the test system with DG as well as in the absence of DG in the system. </span><span>A comparison between the Firefly Algorithm (FA) with Genetic Algorithm (GA) is also demonstrated in this paper. The results obtained have proven that the Firefly Algorithm has a better capability at improving both the voltage profile and the power losses in the system.</span>


Sign in / Sign up

Export Citation Format

Share Document