Locational marginal price computation in radial distribution system using Self Adaptive Levy Flight based JAYA Algorithm and game theory

Author(s):  
Venkataramana Veeramsetty ◽  
Venkaiah Chintham ◽  
Vinod Kumar D.M.

Abstract This study presents a computational approach to compute locational marginal price (LMP) at distributed generation (DG) buses in an electric power distribution system using self-adaptive levy flight based JAYA algorithm and proportional nucleolus theory (PNT). This method provides financial incentive to DG owners based on their contribution in reliability improvement, loss and emission reduction. In this study expected energy not supplied (EENS) is used for measuring the reliability of a given radial distribution network. This method is implemented on 38 bus distribution system under MATLAB environment to compute LMP values at each DG as per its contribution towards reliability improvement, loss reduction and emission reduction. It is found from the study that reliability has been improved, losses and emissions of system were reduced by providing proper financial incentives to DG owners. The proposed method can be utilized by a distribution company (DISCO) to operate network optimally and to estimate state of network.

Author(s):  
Naga Lakshmi Gubbala Venkata ◽  
Jaya Laxmi Askani ◽  
Venkataramana Veeramsetty

Abstract Optimal placement of Distributed Generation (DG) is a crucial challenge for Distribution Companies (DISCO’s) to run the distribution network in good operating conditions. Optimal positioning of DG units is an optimization issue where maximization of DISCO’s additional benefit due to the installation of DG units in the network is considered to be an objective function. In this article, the self adaptive levy flight based black widow optimization algorithm is used as an optimization strategy to find the optimum position and size of the DG units. The proposed algorithm is implemented in the IEEE 15 and PG & E 69 bus management systems in the MATLAB environment. Based on the simulation performance, it has been found that with the correct location and size of the DG modules, the distribution network can be run with maximum DISCO’s additional benefit.


Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3182
Author(s):  
Afroz Alam ◽  
Mohd Tariq ◽  
Mohammad Zaid ◽  
Preeti Verma ◽  
Marwan Alsultan ◽  
...  

There is a need for the optimal positioning of protective devices to maximize customers satisfaction per their demands. Such arrangement advances the distribution system reliability to maximum achievable. Thus, radial distribution system (RDS) reliability can be improved by placing reclosers at suitable feeder sections. This article presents comprehensive details of an attempt to determine the reclosers’ optimal location in an RDS to maximize the utility profit by reliability improvement. Assessment of different reliability indices such as SAIDI, SAIFI, CAIFI, CAIDI, etc., with recloser placement, exhibits a considerable improvement in these indices in contrast with the absence of recloser. Consequently, a new bidirectional formulation has been proposed for the optimized arrangement of reclosers’. This formulation efficiently handles the bidirectional power flow, resulting from distributed generation (DG) unit (s) in the system. The proposed model has been solved for a test system by utilizing the Genetic algorithm (GA) optimization method. Later, test results conclude that reclosers’ optimal placement contributes significantly towards utility profit with minimum investment and outage costs.


Sign in / Sign up

Export Citation Format

Share Document