Dynamics of a stochastic susceptible-infective-recovered (SIRS) epidemic model with vaccination and nonlinear incidence under regime switching and Lévy jumps

Author(s):  
Junna Hu ◽  
Buyu Wen ◽  
Ting Zeng ◽  
Zhidong Teng

Abstract In this paper, a stochastic susceptible-infective-recovered (SIRS) epidemic model with vaccination, nonlinear incidence and white noises under regime switching and Lévy jumps is investigated. A new threshold value is determined. Some basic assumptions with regard to nonlinear incidence, white noises, Markov switching and Lévy jumps are introduced. The threshold conditions to guarantee the extinction and permanence in the mean of the disease with probability one and the existence of unique ergodic stationary distribution for the model are established. Some new techniques to deal with the Markov switching, Lévy jumps, nonlinear incidence and vaccination for the stochastic epidemic models are proposed. Lastly, the numerical simulations not only illustrate the main results given in this paper, but also suggest some interesting open problems.

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Ramziya Rifhat ◽  
Qing Ge ◽  
Zhidong Teng

A stochastic SIS-type epidemic model with general nonlinear incidence and disease-induced mortality is investigated. It is proved that the dynamical behaviors of the model are determined by a certain threshold valueR~0. That is, whenR~0<1and together with an additional condition, the disease is extinct with probability one, and whenR~0>1, the disease is permanent in the mean in probability, and when there is not disease-related death, the disease oscillates stochastically about a positive number. Furthermore, whenR~0>1, the model admits positive recurrence and a unique stationary distribution. Particularly, the effects of the intensities of stochastic perturbation for the dynamical behaviors of the model are discussed in detail, and the dynamical behaviors for the stochastic SIS epidemic model with standard incidence are established. Finally, the numerical simulations are presented to illustrate the proposed open problems.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Hongxia Liu ◽  
Juan Li ◽  
Mengnan Chi ◽  
Jinlei Liu ◽  
Wencai Zhao

In this paper, taking both white noises and colored noises into consideration, a nonlinear stochastic SIRS epidemic model with regime switching is explored. The threshold parameter R s is found, and we investigate sufficient conditions for the existence of the ergodic stationary distribution of the positive solution. Finally, some numerical simulations are also carried out to demonstrate the analytical results.


2018 ◽  
Vol 11 (07) ◽  
pp. 1850091 ◽  
Author(s):  
Yong Li ◽  
Xianning Liu ◽  
Lianwen Wang ◽  
Xingan Zhang

An [Formula: see text] epidemic model incorporating incubation time delay and novel nonlinear incidence is proposed and analyzed to seek for the control strategies of scarlet fever, where the contact rate which can reflect the regular behavior and habit changes of children is non-monotonic with respect to the number of susceptible. The model without delay may exhibit backward bifurcation and bistable states even though the basic reproduction number is less than unit. Furthermore, we derive the conditions for occurrence of Hopf bifurcation when the time delay is considered as a bifurcation parameter. The data of scarlet fever of China are simulated to verify our theoretical results. In the end, several effective preventive and intervention measures of scarlet fever are found out.


Sign in / Sign up

Export Citation Format

Share Document