Hopf bifurcation of a delay SIRS epidemic model with novel nonlinear incidence: Application to scarlet fever

2018 ◽  
Vol 11 (07) ◽  
pp. 1850091 ◽  
Author(s):  
Yong Li ◽  
Xianning Liu ◽  
Lianwen Wang ◽  
Xingan Zhang

An [Formula: see text] epidemic model incorporating incubation time delay and novel nonlinear incidence is proposed and analyzed to seek for the control strategies of scarlet fever, where the contact rate which can reflect the regular behavior and habit changes of children is non-monotonic with respect to the number of susceptible. The model without delay may exhibit backward bifurcation and bistable states even though the basic reproduction number is less than unit. Furthermore, we derive the conditions for occurrence of Hopf bifurcation when the time delay is considered as a bifurcation parameter. The data of scarlet fever of China are simulated to verify our theoretical results. In the end, several effective preventive and intervention measures of scarlet fever are found out.

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ramziya Rifhat ◽  
Zhidong Teng ◽  
Chunxia Wang

AbstractIn this paper, a stochastic SIRV epidemic model with general nonlinear incidence and vaccination is investigated. The value of our study lies in two aspects. Mathematically, with the help of Lyapunov function method and stochastic analysis theory, we obtain a stochastic threshold of the model that completely determines the extinction and persistence of the epidemic. Epidemiologically, we find that random fluctuations can suppress disease outbreak, which can provide us some useful control strategies to regulate disease dynamics. In other words, neglecting random perturbations overestimates the ability of the disease to spread. The numerical simulations are given to illustrate the main theoretical results.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Juan Liu

This paper is concerned with a delayed SEIS (Susceptible-Exposed-Infectious-Susceptible) epidemic model with a changing delitescence and nonlinear incidence rate. First of all, local stability of the endemic equilibrium and the existence of a Hopf bifurcation are studied by choosing the time delay as the bifurcation parameter. Directly afterwards, properties of the Hopf bifurcation are determined based on the normal form theory and the center manifold theorem. At last, numerical simulations are carried out to illustrate the obtained theoretical results.


2012 ◽  
Vol 479-481 ◽  
pp. 1495-1498 ◽  
Author(s):  
Jun Hong Li ◽  
Ning Cui ◽  
Hong Kai Sun

An SIRS epidemic model with nonlinear incidence rate is studied. It is assumed that susceptible and infectious individuals have constant immigration rates. By means of Dulac function and Poincare-Bendixson Theorem, we proved the global asymptotical stable results of the disease-free equilibrium. It is then obtained the model undergoes Hopf bifurcation and existence of one limit cycle. Some numerical simulations are given to illustrate the analytical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Huitao Zhao ◽  
Yiping Lin ◽  
Yunxian Dai

An SIRS epidemic model incorporating media coverage with time delay is proposed. The positivity and boundedness are studied firstly. The locally asymptotical stability of the disease-free equilibrium and endemic equilibrium is studied in succession. And then, the conditions on which periodic orbits bifurcate are given. Furthermore, we show that the local Hopf bifurcation implies the global Hopf bifurcation after the second critical value of the delay. The obtained results show that the time delay in media coverage can not affect the stability of the disease-free equilibrium when the basic reproduction numberR0<1. However, whenR0>1, the stability of the endemic equilibrium will be affected by the time delay; there will be a family of periodic orbits bifurcating from the endemic equilibrium when the time delay increases through a critical value. Finally, some examples for numerical simulations are also included.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Zhen Wang ◽  
Xinhe Wang

A fractional-order epidemic model with time delay is considered. Firstly, stability of the disease-free equilibrium point and endemic equilibrium point is studied. Then, by choosing the time delay as a bifurcation parameter, the existence of Hopf bifurcation is studied. Finally, numerical simulations are given to illustrate the effectiveness and feasibility of theoretical results.


Author(s):  
Amine EL Koufi ◽  
Abdelkrim Bennar ◽  
Noura Yousfi ◽  
M Pitchaimani

In this paper, we consider a stochastic SIRS epidemic model with nonlinear incidence and Markovian switching. By using the stochastic calculus background, we establish that the stochastic threshold R_{ swt}  can be used to determine the compartment dynamics of the stochastic system. Some examples and numerical simulations are presented to confirm the theoretical results established in this paper.


Author(s):  
Junna Hu ◽  
Buyu Wen ◽  
Ting Zeng ◽  
Zhidong Teng

Abstract In this paper, a stochastic susceptible-infective-recovered (SIRS) epidemic model with vaccination, nonlinear incidence and white noises under regime switching and Lévy jumps is investigated. A new threshold value is determined. Some basic assumptions with regard to nonlinear incidence, white noises, Markov switching and Lévy jumps are introduced. The threshold conditions to guarantee the extinction and permanence in the mean of the disease with probability one and the existence of unique ergodic stationary distribution for the model are established. Some new techniques to deal with the Markov switching, Lévy jumps, nonlinear incidence and vaccination for the stochastic epidemic models are proposed. Lastly, the numerical simulations not only illustrate the main results given in this paper, but also suggest some interesting open problems.


Sign in / Sign up

Export Citation Format

Share Document