scholarly journals Role of distraction osteogenesis in craniomaxillofacial surgery

2016 ◽  
Vol 1 (2) ◽  
pp. 97-103 ◽  
Author(s):  
Nicole Ernst ◽  
Nicolai Adolphs

AbstractIn the field of orthopedic surgery, distraction osteogenesis (DO) is well known for limb lengthening procedures or secondary corrective surgery in the fracture treatment of the extremities. The principle of gradual expansion of bone and surrounding soft tissues as originally described by G.A. Ilizarov is also applicable to the craniofacial skeleton when growth deficiency is present, and the patients affected by craniofacial or dentofacial anomalies may require distraction procedures. The surgical management is comparable. After osteotomy and the mounting of a specific craniomaxillofacial distraction device, active distraction is started after a latency phase of several days, with a distraction rate of up to 1 mm/day until the desired amount of distraction has been achieved. Subsequently, distractors are locked to provide appropriate stability within the distraction zone for callus mineralization during the consolidation phase of 3–6 months, which is followed by a further remodeling of the bony regenerate. After 14 years of clinical application, the role and significance of craniomaxillofacial DO are discussed after reviewing the files of all patients who were treated by craniomaxillofacial distraction procedures.

2013 ◽  
Vol 46 (02) ◽  
pp. 194-203 ◽  
Author(s):  
Rajiv Agarwal

ABSTRACTDistraction osteogenesis has revolutionised the management of craniofacial abnormalities. The technique however requires precise planning, patient selection, execution and follow-up to achieve consistent and positive results and to avoid unfavourable results. The unfavourable results with craniofacial distraction stem from many factors ranging from improper patient selection, planning and use of inappropriate distraction device and vector. The present study analyses the current standards and techniques of distraction and details in depth the various errors and complications that may occur due to this technique. The commonly observed complications of distraction have been detailed along with measures and suggestions to avoid them in clinical practice.


2021 ◽  
Vol 22 (21) ◽  
pp. 11734
Author(s):  
Ruisen Fu ◽  
Yili Feng ◽  
David Bertrand ◽  
Tianming Du ◽  
Youjun Liu ◽  
...  

Distraction osteogenesis (DO) is a mechanobiological process of producing new bone and overlying soft tissues through the gradual and controlled distraction of surgically separated bone segments. The process of bone regeneration during DO is largely affected by distraction parameters. In the present study, a distraction strategy with varying distraction rates (i.e., “rate-varying distraction”) is proposed, with the aim of shortening the distraction time and improving the efficiency of DO. We hypothesized that faster and better healing can be achieved with rate-varying distractions, as compared with constant-rate distractions. A computational model incorporating the viscoelastic behaviors of the callus tissues and the mechano-regulatory tissue differentiation laws was developed and validated to predict the bone regeneration process during DO. The effect of rate-varying distraction on the healing outcomes (bony bridging time and bone formation) was examined. Compared to the constant low-rate distraction, a low-to-high rate-varying distraction provided a favorable mechanical environment for angiogenesis and bone tissue differentiation, throughout the distraction and consolidation phase, leading to an improved healing outcome with a shortened healing time. These results suggest that a rate-varying clinical strategy could reduce the overall treatment time of DO and decrease the risk of complications related to the external fixator.


2015 ◽  
Vol 8 (2) ◽  
pp. 117-122 ◽  
Author(s):  
Lorena Pingarrón-Martín ◽  
T. González Otero ◽  
L.J.Arias Gallo

The goal of transport-disc-distraction osteogenesis (TDDO) is to restore bone continuity by using in-situ bone. It may be useful following trauma, gunshot injuries, or tumor ablation, especially when there may be contraindications at the donor site or for prolonged surgery. To the best of the authors’ knowledge, this is the first time TDDO has been used for mandibular reconstruction reporting additional procedures, which include osseointegrated dental implants rehabilitation and orthognathic surgery. A retrospective study is performed analyzing all mandibular reconstruction cases that may be suitable for distraction from January 2006 to December 2011. A thorough description of the documented cases includes details about sex, gender, complications, duration of hospitalization, etiology, size, and location of the defect. Eight cases of mandibular reconstruction were included. Six cases correspond to mandibular ameloblastoma. The remaining two cases were mandibular gunshot comminuted fractures. Range of the defects was from 45 to 60 mm. Length of the transport disc was 15 to 20 mm. Protocolized technique consisted of 5 days of latency period, 19 to 45 days of activation term (average 30 days), and 8 to 12 weeks for consolidation. Mean distraction length achieved was 40.45 mm. We can conclude that TDDO is an alternative to conventional and more invasive procedures, when we face severe segmental mandibular defects reconstruction. It shows the potential to restore a better anatomical bone regeneration, also providing soft tissues and reducing donor-site morbidity. Patients’ education and awareness about the proper use of the transport-disc-distraction device is important to optimize functional outcomes.


Author(s):  
Rami P. Dibbs ◽  
Andrew M. Ferry ◽  
Shayan M. Sarrami ◽  
Amjed Abu-Ghname ◽  
Robert F. Dempsey ◽  
...  

AbstractMandibular and maxillary deformities commonly require surgical intervention. Prior to distraction osteogenesis, traditional modalities involving single-staged translocation and rigid fixation were used to correct these craniofacial anomalies. Distraction osteogenesis has evolved as a compelling alternative for treating aesthetic and functional dentofacial defects. The process of distraction osteogenesis involves three phases—latency, activation, and consolidation—which allow for appropriate translation of the affected craniofacial skeleton. This review will cover the role of distraction for managing congenital and acquired deformities of the mandible and maxilla. This novel technique can be performed at numerous anatomical sites along the craniofacial skeleton to treat a variety of anomalies, which serves as a testament to its adaptability and efficacy. Importantly, distraction osteogenesis also has the ability to simultaneously increase bone length and the overlying soft tissue envelope. This advantage results in larger advancements with reduced relapse rates and improved patient satisfaction. While complications remain a concern, it stands to reason that the measurable benefits observed underscore the power and versatility of distraction osteogenesis.


2020 ◽  
Vol 5 (6) ◽  
pp. 1469-1481 ◽  
Author(s):  
Joseph A. Napoli ◽  
Carrie E. Zimmerman ◽  
Linda D. Vallino

Purpose Craniofacial anomalies (CFA) often result in growth abnormalities of the facial skeleton adversely affecting function and appearance. The functional problems caused by the structural anomalies include upper airway obstruction, speech abnormalities, feeding difficulty, hearing deficits, dental/occlusal defects, and cognitive and psychosocial impairment. Managing disorders of the craniofacial skeleton has been improved by the technique known as distraction osteogenesis (DO). In DO, new bone growth is stimulated allowing bones to be lengthened without need for bone graft. The purpose of this clinical focus article is to describe the technique and clinical applications and outcomes of DO in CFA. Conclusion Distraction can be applied to various regions of the craniofacial skeleton to correct structure and function. The benefits of this procedure include improved airway, feeding, occlusion, speech, and appearance, resulting in a better quality of life for patients with CFA.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qingqiao Xie ◽  
Yuandi Zhuang ◽  
Gaojun Ye ◽  
Tiankuo Wang ◽  
Yi Cao ◽  
...  

AbstractMany soft tissues are compression-stiffening and extension-softening in response to axial strains, but common hydrogels are either inert (for ideal chains) or tissue-opposite (for semiflexible polymers). Herein, we report a class of astral hydrogels that are structurally distinct from tissues but mechanically tissue-like. Specifically, hierarchical self-assembly of amphiphilic gemini molecules produces radial asters with a common core and divergently growing, semiflexible ribbons; adjacent asters moderately interpenetrate each other via interlacement of their peripheral ribbons to form a gel network. Resembling tissues, the astral gels stiffen in compression and soften in extension with all the experimental data across different gel compositions collapsing onto a single master curve. We put forward a minimal model to reproduce the master curve quantitatively, underlying the determinant role of aster-aster interpenetration. Compression significantly expands the interpenetration region, during which the number of effective crosslinks is increased and the network strengthened, while extension does the opposite. Looking forward, we expect this unique mechanism of interpenetration to provide a fresh perspective for designing and constructing mechanically tissue-like materials.


2004 ◽  
Vol 418 ◽  
pp. 213-218 ◽  
Author(s):  
Elizabeth Anne Ouellette ◽  
Jay J Dennis ◽  
Loren L Latta ◽  
Edward L Milne ◽  
Anna-Lena Makowski

2009 ◽  
Vol 3 (1) ◽  
Author(s):  
John C. Magill ◽  
Marten F. Byl ◽  
Batya Goldwaser ◽  
Maria Papadaki ◽  
Roger Kromann ◽  
...  

Distraction osteogenesis is a technique of bone lengthening that makes use of the body’s natural healing capacity. An osteotomy is created, and a rigid distraction device is attached to the bone. After a latency period, the device is activated two to four times per day for a total of 1 mm/day of bone lengthening. This technique is used to correct a variety of congenital and acquired deformities of the mandible, midface, and long bones. To shorten the treatment period and to eliminate the complications of patient activation of the device, an automated continuous distraction device would be desirable. It has been reported that continuous distraction generates adequate bone with lengthening at a rate of 2 mm/day, thereby reducing the treatment time. The device we describe here uses miniature high-pressure hydraulics, position feedback, and a digital controller to achieve closed-loop control of the distraction process. The implanted actuator can produce up to 40 N of distraction force on linear trajectories as well as curved distraction paths. In this paper we detail the spring-powered hydraulic reservoir, controller, and user interface. Experiments to test the new device design were performed in a porcine cadaver head and in live pigs. In the cadaver head, the device performed an 11 day/11 mm distraction with a root-mean-squared position error of 0.09 mm. The device functioned for periods of several days in each of five live animals, though some component failures occurred, leading to design revisions. The test series showed that the novel design of this system provides the capabilities necessary to automate distraction of the mandible. Further developments will focus on making the implanted position sensor more robust and then on carrying out clinical trials.


Sign in / Sign up

Export Citation Format

Share Document