An improved proximal method with quasi-distance for nonconvex multiobjective optimization problem

2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Fouzia Amir ◽  
Ali Farajzadeh ◽  
Jehad Alzabut

Abstract Multiobjective optimization is the optimization with several conflicting objective functions. However, it is generally tough to find an optimal solution that satisfies all objectives from a mathematical frame of reference. The main objective of this article is to present an improved proximal method involving quasi-distance for constrained multiobjective optimization problems under the locally Lipschitz condition of the cost function. An instigation to study the proximal method with quasi distances is due to its widespread applications of the quasi distances in computer theory. To study the convergence result, Fritz John’s necessary optimality condition for weak Pareto solution is used. The suitable conditions to guarantee that the cluster points of the generated sequences are Pareto–Clarke critical points are provided.

2015 ◽  
pp. 1246-1276
Author(s):  
Wen Fung Leong ◽  
Yali Wu ◽  
Gary G. Yen

Generally, constraint-handling techniques are designed for evolutionary algorithms to solve Constrained Multiobjective Optimization Problems (CMOPs). Most Multiojective Particle Swarm Optimization (MOPSO) designs adopt these existing constraint-handling techniques to deal with CMOPs. In this chapter, the authors present a constrained MOPSO in which the information related to particles' infeasibility and feasibility status is utilized effectively to guide the particles to search for feasible solutions and to improve the quality of the optimal solution found. The updating of personal best archive is based on the particles' Pareto ranks and their constraint violations. The infeasible global best archive is adopted to store infeasible nondominated solutions. The acceleration constants are adjusted depending on the personal bests' and selected global bests' infeasibility and feasibility statuses. The personal bests' feasibility statuses are integrated to estimate the mutation rate in the mutation procedure. The simulation results indicate that the proposed constrained MOPSO is highly competitive in solving selected benchmark problems.


Author(s):  
Wen Fung Leong ◽  
Yali Wu ◽  
Gary G. Yen

Generally, constraint-handling techniques are designed for evolutionary algorithms to solve Constrained Multiobjective Optimization Problems (CMOPs). Most Multiojective Particle Swarm Optimization (MOPSO) designs adopt these existing constraint-handling techniques to deal with CMOPs. In this chapter, the authors present a constrained MOPSO in which the information related to particles' infeasibility and feasibility status is utilized effectively to guide the particles to search for feasible solutions and to improve the quality of the optimal solution found. The updating of personal best archive is based on the particles' Pareto ranks and their constraint violations. The infeasible global best archive is adopted to store infeasible nondominated solutions. The acceleration constants are adjusted depending on the personal bests' and selected global bests' infeasibility and feasibility statuses. The personal bests' feasibility statuses are integrated to estimate the mutation rate in the mutation procedure. The simulation results indicate that the proposed constrained MOPSO is highly competitive in solving selected benchmark problems.


2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Qiang Long ◽  
Changzhi Wu ◽  
Xiangyu Wang ◽  
Lin Jiang ◽  
Jueyou Li

Multiobjective genetic algorithm (MOGA) is a direct search method for multiobjective optimization problems. It is based on the process of the genetic algorithm; the population-based property of the genetic algorithm is well applied in MOGAs. Comparing with the traditional multiobjective algorithm whose aim is to find a single Pareto solution, the MOGA intends to identify numbers of Pareto solutions. During the process of solving multiobjective optimization problems using genetic algorithm, one needs to consider the elitism and diversity of solutions. But, normally, there are some trade-offs between the elitism and diversity. For some multiobjective problems, elitism and diversity are conflicting with each other. Therefore, solutions obtained by applying MOGAs have to be balanced with respect to elitism and diversity. In this paper, we propose metrics to numerically measure the elitism and diversity of solutions, and the optimum order method is applied to identify these solutions with better elitism and diversity metrics. We test the proposed method by some well-known benchmarks and compare its numerical performance with other MOGAs; the result shows that the proposed method is efficient and robust.


Sign in / Sign up

Export Citation Format

Share Document