scholarly journals Condensed groups in product varieties

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Denis Osin

Abstract A finitely generated group 𝐺 is said to be condensed if its isomorphism class in the space of finitely generated marked groups has no isolated points. We prove that every product variety U ⁢ V \mathcal{UV} , where 𝒰 (respectively, 𝒱) is a non-abelian (respectively, a non-locally finite) variety, contains a condensed group. In particular, there exist condensed groups of finite exponent. As an application, we obtain some results on the structure of the isomorphism and elementary equivalence relations on the set of finitely generated groups in U ⁢ V \mathcal{UV} .

2017 ◽  
Vol 20 (4) ◽  
Author(s):  
Anna Giordano Bruno ◽  
Pablo Spiga

AbstractWe study the growth of group endomorphisms, a generalization of the classical notion of growth of finitely generated groups, which is strictly related to algebraic entropy. We prove that the inner automorphisms of a group have the same growth type and the same algebraic entropy as the identity automorphism. Moreover, we show that endomorphisms of locally finite groups cannot have intermediate growth. We also find an example showing that the Addition Theorem for algebraic entropy does not hold for endomorphisms of arbitrary groups.


2003 ◽  
Vol 74 (3) ◽  
pp. 295-312 ◽  
Author(s):  
R. G. Burns ◽  
Yuri Medvedev

AbstractIf ω ≡ 1 is a group law implying virtual nilpotence in every finitely generated metabelian group satisfying it, then it implies virtual nilpotence for the finitely generated groups of a large class of groups including all residually or locally soluble-or-finite groups. In fact the groups of satisfying such a law are all nilpotent-by-finite exponent where the nilpotency class and exponent in question are both bounded above in terms of the length of ω alone. This yields a dichotomy for words. Finally, if the law ω ≡ 1 satisfies a certain additional condition—obtaining in particular for any monoidal or Engel law—then the conclusion extends to the much larger class consisting of all ‘locally graded’ groups.


1972 ◽  
Vol 6 (3) ◽  
pp. 357-378 ◽  
Author(s):  
R.M. Bryant ◽  
L.G. Kovács

The skeleton of a variety of groups is defined to be the intersection of the section closed classes of groups which generate . If m is an integer, m > 1, is the variety of all abelian groups of exponent dividing m, and , is any locally finite variety, it is shown that the skeleton of the product variety is the section closure of the class of finite monolithic groups in . In particular, S) generates . The elements of S are described more explicitly and as a consequence it is shown that S consists of all finite groups in if and only if m is a power of some prime p and the centre of the countably infinite relatively free group of , is a p–group.


1983 ◽  
Vol 26 (1) ◽  
pp. 25-28 ◽  
Author(s):  
John C. Lennox

A subgroup Q of a group G is called quasinormal in G if Q permutes with every subgroup of G. Of course a quasinormal subgroup Q of a group G may be very far from normal. In fact, examples of Iwasawa show (for a convenient reference see [8]) that we may have Q core-free and the normal closure QG of Q in G equal to G so that Q is not even subnormal in G. We note also that the core of Q in G, QG, is of infinite index in QG in this example. If G is finitely generated then any quasinormal subgroup Q is subnormal in G [8] and although Q is not necessarily normal in G we have that |QG:Q| is finite and |QG:Q| is a nilpotent group of finite exponent [5].


1997 ◽  
Vol 07 (04) ◽  
pp. 511-540 ◽  
Author(s):  
Keith A. Kearnes ◽  
Ágnes Szendrei

We show that a locally finite variety which omits abelian types is self-rectangulating if and only if it has a compatible semilattice term operation. Such varieties must have type-set {5}. These varieties are residually small and, when they are finitely generated, they have definable principal congruences. We show that idempotent varieties with a compatible semilattice term operation have the congruence extension property.


2020 ◽  
Vol 108 (5-6) ◽  
pp. 671-678
Author(s):  
D. V. Gusev ◽  
I. A. Ivanov-Pogodaev ◽  
A. Ya. Kanel-Belov

Sign in / Sign up

Export Citation Format

Share Document