The structure of locally finite groups of finite c-dimension

2019 ◽  
Vol 18 (12) ◽  
pp. 1950223
Author(s):  
A. A. Buturlakin

The [Formula: see text]-dimension of a group is the supremum of lengths of strict nested chains of centralizers. We describe the structure of locally finite groups of finite [Formula: see text]-dimension. We also prove that the [Formula: see text]-dimension of the quotient [Formula: see text] of a locally finite group [Formula: see text] by the locally soluble radical [Formula: see text] is bounded in terms of the [Formula: see text]-dimension of [Formula: see text].

2012 ◽  
Vol 15 (1) ◽  
Author(s):  
Kıvanç Ersoy ◽  
Mahmut Kuzucuoğlu

AbstractHartley asked the following question: Is the centralizer of every finite subgroup in a simple non-linear locally finite group infinite? We answer a stronger version of this question for finite 𝒦-semisimple subgroups. Namely letMoreover we prove that if


Author(s):  
A. Rae

1.1. Introduction. In this paper, we continue with the theme of (1): the relationships holding between the Sπ (i.e. maximal π) subgroups of a locally finite group and the various local systems of that group. In (1), we were mainly concerned with ‘good’ Sπ subgroups – those which reduce into some local system (and are said to be good with respect to that system). Here, on the other hand, we are concerned with a very much more special sort of Sπ subgroup.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mahdi Meisami ◽  
Ali Rejali ◽  
Meisam Soleimani Malekan ◽  
Akram Yousofzadeh

Abstract Let 𝐺 be a discrete group. In 2001, Rosenblatt and Willis proved that 𝐺 is amenable if and only if every possible system of configuration equations admits a normalized solution. In this paper, we show independently that 𝐺 is locally finite if and only if every possible system of configuration equations admits a strictly positive solution. Also, we give a procedure to get equidecomposable subsets 𝐴 and 𝐵 of an infinite finitely generated or a locally finite group 𝐺 such that A ⊊ B A\subsetneq B , directly from a system of configuration equations not having a strictly positive solution.


1987 ◽  
Vol 36 (3) ◽  
pp. 461-468 ◽  
Author(s):  
Berthold J. Maier

We construct non amalgamation bases in the class of locally finite groups, and we present necessary and sufficient conditions for the embeddability of an amalgam into a locally finite group in the case that the common subgroup has finite index in both constituents.


2013 ◽  
Vol 89 (3) ◽  
pp. 479-487 ◽  
Author(s):  
F. DE GIOVANNI ◽  
M. MARTUSCIELLO ◽  
C. RAINONE

AbstractIf $X$ is a subgroup of a group $G$, the cardinal number $\min \{ \vert X: X_{G}\vert , \vert {X}^{G} : X\vert \} $ is called the normal oscillation of $X$ in $G$. It is proved that if all subgroups of a locally finite group $G$ have finite normal oscillation, then $G$ contains a nilpotent subgroup of finite index.


1978 ◽  
Vol 84 (2) ◽  
pp. 247-262 ◽  
Author(s):  
I. M. Musson

Two recent results relate the existence of injective modules for group algebras which are ‘small’ in some sense to the structure of the group.(1) The trivial kG-module is injective if and only if G is a locally finite group with no elements of order p = char k (9).(2) If (G) is a countable group, then every irreducible kG-module is injective if and only if G is a locally finite p′ group which is abelian-by-finite (9) and (11)


2019 ◽  
Vol 62 (1) ◽  
pp. 183-186
Author(s):  
KIVANÇ ERSOY

AbstractIn Ersoy et al. [J. Algebra481 (2017), 1–11], we have proved that if G is a locally finite group with an elementary abelian p-subgroup A of order strictly greater than p2 such that CG(A) is Chernikov and for every non-identity α ∈ A the centralizer CG(α) does not involve an infinite simple group, then G is almost locally soluble. This result is a consequence of another result proved in Ersoy et al. [J. Algebra481 (2017), 1–11], namely: if G is a simple locally finite group with an elementary abelian group A of automorphisms acting on it such that the order of A is greater than p2, the centralizer CG(A) is Chernikov and for every non-identity α ∈ A the set of fixed points CG(α) does not involve an infinite simple groups then G is finite. In this paper, we improve this result about simple locally finite groups: Indeed, suppose that G is a simple locally finite group, consider a finite non-abelian subgroup P of automorphisms of exponent p such that the centralizer CG(P) is Chernikov and for every non-identity α ∈ P the set of fixed points CG(α) does not involve an infinite simple group. We prove that if Aut(G) has such a subgroup, then G ≅PSLp(k) where char k ≠ p and P has a subgroup Q of order p2 such that CG(P) = Q.


Author(s):  
B. Hartley ◽  
M. J. Tomkinson

It is a well known theorem of Gaschütz (4) and Schenkman (12) that if G is a finite group whose nilpotent residual A is Abelian, then G splits over A and the complements to A in G are conjugate. Following Robinson (10) we describe this situation by saying that G splits conjugately over A. A number of generalizations of this result have since been obtained, some of them being in the context of the formation theory of finite or locally finite groups (see, for example, (1), (3)) and others, for example, the recent and far-reaching results of Robinson (10, 11) being concerned with groups which are not necessarily periodic. Our results here are of the latter type.


2012 ◽  
Vol 86 (3) ◽  
pp. 416-423 ◽  
Author(s):  
MOHAMMAD ZARRIN

AbstractGroups having exactly one normaliser are well known. They are the Dedekind groups. All finite groups having exactly two normalisers were classified by Pérez-Ramos [‘Groups with two normalizers’, Arch. Math.50 (1988), 199–203], and Camp-Mora [‘Locally finite groups with two normalizers’, Comm. Algebra28 (2000), 5475–5480] generalised that result to locally finite groups. Then Tota [‘Groups with a finite number of normalizer subgroups’, Comm. Algebra32 (2004), 4667–4674] investigated properties (such as solubility) of arbitrary groups with two, three and four normalisers. In this paper we prove that every finite group with at most 20 normalisers is soluble. Also we characterise all nonabelian simple (not necessarily finite) groups with at most 57 normalisers.


1990 ◽  
Vol 32 (2) ◽  
pp. 153-163 ◽  
Author(s):  
Felix Leinen

In this paper, will always denote a local class of locally finite groups, which is closed with respect to subgroups, homomorphic images, extensions, and with respect to cartesian powers of finite -groups. Examples for x are the classes L ℐπ of all locally finite π-groups and L(ℐπ ∩ ) of all locally soluble π-groups (where π is a fixed set of primes). In [4], a wreath product construction was used in the study of existentially closed -groups (=e.c. -groups); the restrictive type of construction available in [4] permitted results for only countable groups. This drawback was then removed partially in [5] with the help of permutational products. Nevertheless, the techniques essentially only permitted amalgamation of -groups with locally nilpotent π-groups. Thus, satisfactory results could be obtained for Lp-groups (resp. locally nilpotent π-groups) [6], while the theory remained incomplete in all other cases.


Sign in / Sign up

Export Citation Format

Share Document