as solubility
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 33)

H-INDEX

14
(FIVE YEARS 2)

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6958
Author(s):  
Ana R. F. Carreira ◽  
Telma Veloso ◽  
Nicolas Schaeffer ◽  
Joana L. Pereira ◽  
Sónia P. M. Ventura ◽  
...  

Bio-based ionic liquids (ILs) are being increasingly sought after, as they are more sustainable and eco-friendly. Purines are the most widely distributed, naturally occurring N-heterocycles, but their low water-solubility limits their application. In this work, four purines (theobromine, theophylline, xanthine, and uric acid) were combined with the cation tetrabutylammonium to synthesize bio-based ILs. The physico–chemical properties of the purine-based ILs were characterized, including their melting and decomposition temperatures and water-solubility. The ecotoxicity against the microalgae Raphidocelis subcapitata was also determined. The ILs show good thermal stability (>457 K) and an aqueous solubility enhancement ranging from 53- to 870-fold, in comparison to their respective purine percursors, unlocking new prospects for their application where aqueous solutions are demanded. The ecotoxicity of these ILs seems to be dominated by the cation, and it is similar to chloride-based IL, emphasizing that the use of natural anions does not necessarily translate to more benign ILs. The application of the novel ILs in the formation of aqueous biphasic systems (ABS), and as solubility enhancers, was also evaluated. The ILs were able to form ABS with sodium sulfate and tripotassium citrate salts. The development of thermoresponsive ABS, using sodium sulfate as a salting-out agent, was accomplished, with the ILs having different thermosensitivities. In addition, the purine-based ILs acted as solubility enhancers of ferulic acid in aqueous solution.


Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5575
Author(s):  
Qing Huang ◽  
Youyi Wang ◽  
Huaimo Wu ◽  
Man Yuan ◽  
Changwu Zheng ◽  
...  

Xanthones are secondary metabolites found in plants, fungi, lichens, and bacteria from a variety of families and genera, with the majority found in the Gentianaceae, Polygalaceae, and Clusiaceae. They have a diverse range of bioactivities, including anti-oxidant, anti-bacterial, anti-malarial, anti-tuberculosis, and cytotoxic properties. Xanthone glucosides are a significant branch of xanthones. After glycosylation, xanthones may have improved characteristics (such as solubility and pharmacological activity). Currently, no critical review of xanthone glucosides has been published. A literature survey including reports of naturally occurring xanthone glucosides is included in this review. The isolation, structure, bioactivity, and synthesis of these compounds were all explored in depth.


2021 ◽  
Author(s):  
Tianran Zhai ◽  
Kenson Ambrose ◽  
Adit Nyayachavadi ◽  
Kelly G. Walter ◽  
Simon Rondeau-Gagné ◽  
...  

We show here that non-network metallopolymers can possess intrinsic microporosity stemming from contortion introduced by metallocene building blocks. Metallopolymers constructed from ferrocenyl building blocks linked by phenyldiacetylene bridges are synthesized and possess BET surface areas up to 400 m2/g. As solubility imparted by pendant groups reduces porosity, copolymerization is used to simultaneously improve both accessible surface area and solubility. Spectroscopic analysis provides evidence that mixed valency between neighboring ferrocenyl units is supported in these polymers.


2021 ◽  
Vol 22 (15) ◽  
pp. 8190
Author(s):  
Elżbieta Bednarek ◽  
Wojciech Bocian ◽  
Magdalena Urbanowicz ◽  
Jerzy Sitkowski ◽  
Beata Naumczuk ◽  
...  

Novel nontoxic derivatives of SN38 with favorable antineoplastic properties were characterized in water solution using NMR. The phenomena observed by NMR were linked to basic pharmacological properties, such as solubility, bioavailability, chemical and stereochemical stability, and binding to natural DNA oligomers through the terminal G-C base pair, which is commonly considered a biological target of Topo I inhibitors. Compound 1, with bulky substituents at both C5(R) and C20(S) on the same side of a camptothecin core, manifests self-association, whereas diastereomers 2, with bulky C5(S) and C20(S) substituents are mostly monomeric in solution. The stereogenic center at C5 is stable in water solution at pH 5–6. The compound with an (N-azetidinyl)methyl substituent at C9 can undergo the retro Mannich reaction after a prolonged time in water solution. Both diastereomers exhibit different abilities in terms of binding to DNA oligomers: compound 1 is strongly bound, whereas the binding of compound 2 is rather weak. Molecular modeling produced results consistent with NMR experiments. These complementary data allow linking of the observed phenomena in NMR experiments to basic preliminary information on the pharmacodynamic character of compounds and are essential for planning further development research.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 671
Author(s):  
Fucheng Leng ◽  
Koen Robeyns ◽  
Tom Leyssens

Cocrystallization is commonly used for its ability to improve the physical properties of APIs, such as solubility, bioavailability, compressibility, etc. The pharmaceutical industry is particularly interested in those cocrystals comprising a GRAS former in connection with the target API. In this work, we focus on the potential of urea as a cocrystal former, identifying three novel pharmaceutical cocrystal systems with catechin, 3-hydroxyl-2-naphthoic and ellagic acid. Interestingly, the stability of catechin under high humidity or high temperature environment is improved upon cocrystallization with urea. Moreover, the solubility of ellagic acid is improved about 17 times. This work displays the latent possibility of urea in improving the physical property of drug molecules using a cocrystallization approach.


2021 ◽  
Vol 75 (4) ◽  
pp. 285-290
Author(s):  
Hsin-Hua Huang ◽  
Tomáš Šolomek

Chemistry of porous organic cages has developed in the past decade as an alternative to the wellknown nanoporous materials based on extended networks, such as metal organic frameworks (MOFs) or covalent organic frameworks (COFs). Unlike these extended polymeric materials, the molecular nature of organic cages offers important advantages, such as solubility of the material in common organic solvents. However, a simultaneous combination of porosity and additional optoelectronic properties, common in MOFs and COFs, is still quite rare. Therefore, porous organic cages are relatively underdeveloped when compared to MOFs and COFs. Here, we highlight the rich possibilities the porous organic cages offer and discuss the recent development where interesting photophysical properties augment the porosity, including our own work.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Zahra Hami

Context: During the past two decades, the development of drug delivery systems based on nanomaterials has yielded nanocarriers for smart application in nanomedicine to treat diseases. Evidence Acquisition: The current review presents a summary of some advances in the development and application of nano-delivery systems for improving the efficacy of conventional drugs and reducing their adverse effects through the production of smart delivery carriers with targeting moieties and controlled release strategies used in therapy. The searches were conducted in ScienceDirect, Scopus, Google Scholar, and PubMed databases for relevant studies. Results: As reviewed in the present paper, the investigated targeted drug delivery systems have proven to be more effective than free drugs by enhancing efficacy and reducing the systemic toxicity of therapy. In addition, many studies have shown remarkable advantages of nanoscale drug delivery carriers regarding the possibility to improve properties such as solubility, stability, absorption, diffusivity, bioavailability, targeting, and controlled release of drugs. Conclusions: Despite many advantages of nanoscale drug delivery systems reported in the medical literature, deeper research about the composition, synthesis, characteristics, and clinical applications in this area is needed.


2021 ◽  
Vol 11 (6) ◽  
pp. 13934-13951

Encapsulation of bioactive compounds s been considered a promising tool for preserving these compounds. Several studies on dietary sources and health benefits of flavonoids, their chemical and stability properties, and encapsulation methods used for delivery of flavonoids were reviewed. Flavonoids comprise the main group of polyphenols widely found in fruits and vegetables responsible for numerous biological activities. They have a flavan nucleus with 15 carbon atoms organized in three rings and are categorized into six subgroups. The main dietary sources of flavonoids are fruits, vegetables, cereals, tea, and some herbs such as Viola odorata Linn. These compounds can prevent diseases such as cardiovascular, cancers, neurodegenerative, diabetes, and inflammatory bowel disease. Despite these beneficial biological activities, flavonoids are not stable against environmental conditions, have low water solubility and low bioavailability after oral administration, which restricts their application. Accordingly, encapsulation has been utilized in order to improve the stability and solubility of flavonoids. Various approaches such as spray drying, molecular complexes, liposomes, nanoparticles, emulsification, and multilamellar vesicles have been applied in the entrapment of flavonoids. Encapsulation can improve the stability of flavonoids as well as solubility, controlled release, and bioavailability.


2021 ◽  
Author(s):  
Muhammad Awais Piracha ◽  
Muhammad Ashraf ◽  
Sher Muhammad Shahzad ◽  
Muhammad Saleem Arif ◽  
Muhammad Shahid Rizwan ◽  
...  

Abstract Being analogue to arsenic (As), phosphorus (P) may affect As dynamics in soil and toxicity to plants depending upon many soil and plant factors. Two sets of experiments were conducted to determine the effect of P on As fractionation in soils, its accumulation by plants and subsequent impact on growth, yield and physiological characteristics of sunflower (Helianthus annuus L.). Experimental plan comprised of two As levels (60 and 120 mg As kg-1 soil), four P (0-5-10-20 g phosphate rock kg-1 soil) and three textural types (sandy, loamy and clayey) with three replications. Among different As fractions determined, labile, calcium-bound, organic matter-bound and residual As increased while iron-bound and aluminum-bound As decreased with increasing P in all the three textural types. Labile-As percentage increased in the presence of P by 16.9-48.0% at As60 while 36.0-68.1% at As120 in sandy, 19.1-64.0% at As60 while 11.5-52.3% at As120 in loamy, and 21.8-58.2% at As60 while 22.3-70.0% at As120 in clayey soil compared to respective As treatment without P. Arsenic accumulation in plant tissues at both contamination levels declined with P addition as evidenced by lower bioconcentration factor. Phosphorus mitigated the As-induced oxidative stress expressed in term of reduced hydrogen peroxide, malondialdehyde while increased glutathione, and consequently improved the achene yield. Although, P increased As solubility in soil but restricted its accumulation in plant tissues, leading to reversal of oxidative damage and improved sunflower growth and yield in all the three soil textural types, more profound effect in sandy texture.


Author(s):  
Md Ali Mujtaba ◽  
Md Habban Akhter ◽  
Md. Sarfaraz Alam ◽  
Mohammad Daud Ali ◽  
Afzal Hussain

: Natural products are well known for their high potency with minimum side effects. Plant extracts are the most commonly used natural products because of their ease of availability and relatively low production cost. Berberine (BBR), a phytochemical component of some Chinese medicinal herbs (most commonlyBerberis vulgaris), is an isoquinoline alkaloid with several biological and pharmacological effects including antioxidant, anti‐inflammatory, antitumour, antimicrobial, antidepressant,hepatoprotective, hypolipidemic, and hypoglycemic actions. Interestingly, multiple studies have shown that BBR is a potential drug candidate with a multi-spectrum therapeutic application. However, the oral delivery of BBR is challenged owing to its poor bioavailability. Therefore, its oral bioavailability needs to be enhanced before it can be used in many clinical applications. This review provides an overview of the various studies that support the broad range of pharmacological activities of BBR. Also, it includes a section to address the issues and challenges related with the drug and methods to improve the properties of BBR such as solubility, stability and bioavailability that may be explored to help patients reap the maximum benefit from this potentially useful drug.


Sign in / Sign up

Export Citation Format

Share Document