On the clustering of stationary points of Tikhonov’s functional for conditionally well-posed inverse problems

2020 ◽  
Vol 28 (5) ◽  
pp. 713-725
Author(s):  
Mikhail Y. Kokurin

AbstractIn a Hilbert space, we consider a class of conditionally well-posed inverse problems for which the Hölder type estimate of conditional stability on a bounded closed and convex subset holds. We investigate a finite-dimensional version of Tikhonov’s scheme in which the discretized Tikhonov’s functional is minimized over the finite-dimensional section of the set of conditional stability. For this optimization problem, we prove that each its stationary point that is located not too far from the desired solution of the original inverse problem in reality belongs to a small neighborhood of the solution. Estimates for the diameter of this neighborhood in terms of discretization errors and error level in input data are also given.

2020 ◽  
Vol 29 (1) ◽  
pp. 93-108
Author(s):  
Ganghua Yuan

Abstract In this paper, we study two inverse problems for stochastic parabolic equations with additive noise. One is to determinate the history of a stochastic heat process and the random heat source simultaneously by the observation at the final time 𝑇. For this inverse problem, we obtain a conditional stability result. The other one is an inverse source problem to determine two kinds of sources simultaneously by the observation at the final time and on the lateral boundary. The main tool for solving the inverse problems is a new global Carleman estimate for the stochastic parabolic equation.


2019 ◽  
Vol 28 (14) ◽  
pp. 1944006
Author(s):  
ChunJun Cao ◽  
Aidan Chatwin-Davies ◽  
Ashmeet Singh

According to the holographic bound, there is only a finite density of degrees of freedom in space when gravity is taken into account. Conventional quantum field theory does not conform to this bound, since in this framework, infinitely many degrees of freedom may be localized to any given region of space. In this paper, we explore the viewpoint that quantum field theory may emerge from an underlying theory that is locally finite-dimensional, and we construct a locally finite-dimensional version of a Klein–Gordon scalar field using generalized Clifford algebras. Demanding that the finite-dimensional field operators obey a suitable version of the canonical commutation relations makes this construction essentially unique. We then find that enforcing local finite dimensionality in a holographically consistent way leads to a huge suppression of the quantum contribution to vacuum energy, to the point that the theoretical prediction becomes plausibly consistent with observations.


2018 ◽  
Vol 8 (3) ◽  
pp. 407-443 ◽  
Author(s):  
Axel Flinth ◽  
Pierre Weiss

Abstract We study the solutions of infinite dimensional inverse problems over Banach spaces. The regularizer is defined as the total variation of a linear mapping of the function to recover, while the data fitting term is a near arbitrary function. The first contribution describes the solution’s structure: we show that under mild assumptions, there always exists an $m$-sparse solution, where $m$ is the number of linear measurements of the signal. Our second contribution is about the computation of the solution. While most existing works first discretize the problem, we show that exact solutions of the infinite dimensional problem can be obtained by solving one or two consecutive finite dimensional convex programs depending on the measurement functions structures. We finish by showing an application on scattered data approximation. These results extend recent advances in the understanding of total-variation regularized inverse problems.


2008 ◽  
Vol 8 (1) ◽  
pp. 86-98 ◽  
Author(s):  
S.G. SOLODKY ◽  
A. MOSENTSOVA

Abstract The problem of approximate solution of severely ill-posed problems given in the form of linear operator equations of the first kind with approximately known right-hand sides was considered. We have studied a strategy for solving this type of problems, which consists in combinating of Morozov’s discrepancy principle and a finite-dimensional version of the Tikhonov regularization. It is shown that this combination provides an optimal order of accuracy on source sets


2006 ◽  
Vol 13 (1) ◽  
pp. 101-108
Author(s):  
Alexander Kharazishvili

Abstract Several combinatorial questions and facts connected with certain types of mutual positions of finitely many hyperplanes in a finite-dimensional affine space are considered. An application of one of such facts to a multi-dimensional version of the well-known Sylvester theorem is presented.


Sign in / Sign up

Export Citation Format

Share Document