scholarly journals Scaled weighted total least-squares adjustment for partial errors-in-variables model

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
J. Zhao

AbstractScaled total least-squares (STLS) unify LS, Data LS, and TLS with a different choice of scaled parameter. The function of the scaled parameter is to balance the effect of random error of coefficient matrix and observation vector for the estimate of unknown parameter. Unfortunately, there are no discussions about how to determine the scaled parameter. Consequently, the STLS solution cannot be obtained because the scaled parameter is unknown. In addition, the STLS method cannot be applied to the structured EIV casewhere the coefficient matrix contains the fixed element and the repeated random elements in different locations or both. To circumvent the shortcomings above, the study generalize it to a scaledweighted TLS (SWTLS) problem based on partial errors-in-variable (EIV) model. And the maximum likelihood method is employed to derive the variance component of observations and coefficient matrix. Then the ratio of variance component is proposed to get the scaled parameter. The existing STLS method and WTLS method is just a special example of the SWTLS method. The numerical results show that the proposed method proves to bemore effective in some aspects.

2015 ◽  
Vol 141 (2) ◽  
pp. 04014013 ◽  
Author(s):  
Xiaohua Tong ◽  
Yanmin Jin ◽  
Songlin Zhang ◽  
Lingyun Li ◽  
Shijie Liu

2016 ◽  
Vol 10 (4) ◽  
Author(s):  
You Wu ◽  
Jun Liu ◽  
Hui Yong Ge

AbstractTotal least squares (TLS) is a technique that solves the traditional least squares (LS) problem for an errors-in-variables (EIV) model, in which both the observation vector and the design matrix are contaminated by random errors. Four- and seven-parameter models of coordinate transformation are typical EIV model. To determine which one of TLS and LS is more effective, taking the four- and seven-parameter models of Global Navigation Satellite System (GNSS) coordinate transformation with different coincidence pointsas examples, the relative effectiveness of the two methods was compared through simulation experiments. The results showed that in the EIV model, the errors-in-variables-only (EIVO) model and the errors-in-observations-only (EIOO) model, TLS is slightly inferior to LS in the four-parameter model coordinate transformation, and TLS is equivalent to LS in the seven-parameter model coordinate transformation. Consequently, in the four- and seven-parameter model coordinate transformation, TLS has no obvious advantage over LS.


Sign in / Sign up

Export Citation Format

Share Document