coordinate transformation
Recently Published Documents


TOTAL DOCUMENTS

1043
(FIVE YEARS 143)

H-INDEX

40
(FIVE YEARS 4)

Author(s):  
N. Azahar ◽  
W. A. Wan Aris ◽  
T. A. Musa ◽  
A. H. Omar ◽  
I. A. Musliman

Abstract. Bursa-Wolf model is a common mathematical approach for coordinate transformation practice between two reference frames. For the case of deforming region, the existing reference frame has been experiencing a non-linear shifting over the time due to co-seismic and post seismic occurrences. Imprecise coordinate in the reference frame definition could degrading critical positioning, surveying, and navigation activities. This require a new realization of reference frame and the coordinate transformation linkage is suggested to be developed in relating the new and existing reference frame. This study provides performance of Bursa-Wolf model as coordinate transformation approach for a deforming region that is experiencing non-linear shifting due to the co-seismic and post-seismic events. The Bursa-Wolf were generated from 32 dependent Global Positioning System (GPS) Continuously Operating Reference Stations (CORS) in Malaysia meanwhile another 20 independent neighbouring stations were utilized for assessment purposes. Seven parameters (7p) of Bursa-Wolf were estimated with RMS at ±4.5mm, ±9.2mm and ±2.1mm respectively. The independent stations were classified as internal and external assessment station and the root mean square (RMS) were found at less than 10mm. The internal station has depicted a better RMS in each component which are ±5.1mm, ±6.5mm and ±1.5mm respectively. Meanwhile for external stations RMS in each component are ±6.1mm, ±8.7mm and ±3.5mm respectively. The result shows that Bursa-Wolf model is sufficient to be used as coordinate transformation approach for deforming region.


2022 ◽  
Vol 2148 (1) ◽  
pp. 012007
Author(s):  
Mingwen Chi

Abstract In this paper, the technology of profile generation based on 3D model is studied. The main steps are as follows: (1) the location where the profile needs to be generated in 3D model design; (2) Using 3D data cutting technology to realize the generation of geological lines in profile; (3) Read the basic exploration data related to profile position in the database; (4) According to the data generated in the first three steps, the cross-section is automatically drawn after data coordinate transformation. The above method can quickly generate the geological profile of any location according to the 3D geological model, which is helpful for geological analysis and provides reference data for engineering design.


2021 ◽  
Author(s):  
Sangwha Yi

In the general theory of relativity the Rindler coordinate theory has been extended to the Rindler coordinate theory of accelerated observer that has already some initial velocity. In this paper, we present this extended theory that uses the tetrad as the new method, and discover the new inverse-coordinate transformation. Specially, if, a0 < 0 , this theory treats the observer with the initial velocity that does slowdown by the constant negative acceleration in the Rindler’s time-space. We consider the light’s Doppler Effect in the accelerated system as well as the decelerated system.


2021 ◽  
Author(s):  
Wen-Xiang Chen

For the relationship of the limit $y$ of the incident particle under the superradiance of the preset boundary (${\mu} = {y}{\omega}$),we find the relationship between black hole thermodynamics and superradiation, and use boundary conditions to establish the relationship between y and R. One of the modes under f(R) gravity,there is a possible solution.When r tends to infinity, as a coordinate transformation, y tends to 0. At that time, there is a potential barrier near the event horizon, that is, the Schwarzschild black hole under f(R) gravitation has superradiation at that time.


InterConf ◽  
2021 ◽  
pp. 256-266
Author(s):  
Huynh Nguyen Dinh Quoc ◽  
Dang Xuan Truong ◽  
Tran Thi Bao Tram

The EIO (Errors In Observations) model is used in the total least squares method to calculate, process geodetic data. Next to the classical least squares method, it is applied to solve more solutions. When we use the EIO model in calculus and process, performing a matrix inverse has a large dimension will be avoided. Moreover, the calculation and accuracy evaluation steps are based on the iterative algorithm to get the results. In this paper, the authors use the procedure of calculating and evaluating the accuracy of the EIO model in the experimental calculation of the coordinate transformation according to the Helmert formula


2021 ◽  
Vol 2081 (1) ◽  
pp. 012036
Author(s):  
Vitalii Vertogradov

Abstract In this paper we investigate how the leading term in the geodesic equation in Schwarzschild spacetime changes under the coordinate transformation to Eddington-Finkelstein coordinates. This term corresponds to the Newton force of attraction. Also we consider this term when we add the energy-momentum tensor of the form of the null dust and the null perfect fluid into right-hand side of the Einstein equation. We estimate the value of this force in Vaidya spacetime when the naked singularity formation occurs. Also we give conditions in generalized Vaidya spacetime when this force of attraction is replaced by the force of repulsion.


2021 ◽  
Vol 11 (21) ◽  
pp. 9963
Author(s):  
Rafael A. Figueroa-Díaz ◽  
Pedro Cruz-Alcantar ◽  
Antonio de J. Balvantín-García

In the area of modal balancing, it is essential to identify the vibration modes to be balanced in order to obtain the different modal parameters that will allow knowing the correction weight and its position in the balance planes. However, in some cases, a single mode is apparently observed in the polar response diagrams used for this process, which actually contains at least two modes and which, when added vectorially, shows only one apparent mode. In these cases, in addition to the intrinsic errors when using a modal parameter extraction tool, there will be errors in determining the correction weight for the modes, as well as for the placement angle. In this work, an identification methodology is presented which, through the use of coordinate transformation and a modal parameter extraction tool, allows identifying characteristic patterns of close modes in frequency and which, when applied in the study of a system in the field, offers robustness and applicability.


Author(s):  
Zheng Mingliang ◽  

An design method of electromagnetic metamaterial based on Lie symmetry of Maxwell's equation is proposed, which is applied to the modulation of electromagnetic wave / light. Firstly, the electromagnetic control model based on metamaterials is introduced, then according to the theory of Transformation Optics (TO), Lie symmetry analysis is applied to the coordinate transformation of material physical space, and the key core is the determining equations of Lie symmetry is derived. Secondly, the analytical forms of constitutive parameters (permittivity and permeability) of metamaterials are introduced, which can be used to design all kinds of electromagnetic metamaterials. Finally, the Lie symmetry method is applied to the control of electromagnetic beam width. The results show that the metamaterial based on Lie symmetry of Maxwell's equation have good field distribution, and it overcomes the single subjectivity of traditional coordinate transformation in optical transformation. The wave simulation by COMSOL Multiphysics software verify the correctness of Lie symmetry method.


Sign in / Sign up

Export Citation Format

Share Document