variance component
Recently Published Documents


TOTAL DOCUMENTS

587
(FIVE YEARS 82)

H-INDEX

39
(FIVE YEARS 3)

2021 ◽  
pp. 096228022110651
Author(s):  
Miao-Yu Tsai ◽  
Chia-Ni Sun ◽  
Chao-Chun Lin

For longitudinal overdispersed Poisson data sets, estimators of the intra-, inter-, and total concordance correlation coefficient through variance components have been proposed. However, biased estimators of quadratic forms are used in concordance correlation coefficient estimation. In addition, the generalized estimating equations approach has been used in estimating agreement for longitudinal normal data and not for longitudinal overdispersed Poisson data. Therefore, this paper proposes a modified variance component approach to develop the unbiased estimators of the concordance correlation coefficient for longitudinal overdispersed Poisson data. Further, the indices of intra-, inter-, and total agreement through generalized estimating equations are also developed considering the correlation structure of longitudinal count repeated measurements. Simulation studies are conducted to compare the performance of the modified variance component and generalized estimating equation approaches for longitudinal Poisson and overdispersed Poisson data sets. An application of corticospinal diffusion tensor tractography study is used for illustration. In conclusion, the modified variance component approach performs outstandingly well with small mean square errors and nominal 95% coverage rates. The generalized estimating equation approach provides in model assumption flexibility of correlation structures for repeated measurements to produce satisfactory concordance correlation coefficient estimation results.


2021 ◽  
Vol 15 (4) ◽  
Author(s):  
Juhyun Kim ◽  
Judong Shen ◽  
Anran Wang ◽  
Devan V. Mehrotra ◽  
Seyoon Ko ◽  
...  

Author(s):  
Daiane Aparecida Zuanetti ◽  
Luis Aparecido Milan

In this paper, we propose a new Bayesian approach for QTL mapping of family data. The main purpose is to model a phenotype as a function of QTLs’ effects. The model considers the detailed familiar dependence and it does not rely on random effects. It combines the probability for Mendelian inheritance of parents’ genotype and the correlation between flanking markers and QTLs. This is an advance when compared with models which use only Mendelian segregation or only the correlation between markers and QTLs to estimate transmission probabilities. We use the Bayesian approach to estimate the number of QTLs, their location and the additive and dominance effects. We compare the performance of the proposed method with variance component and LASSO models using simulated and GAW17 data sets. Under tested conditions, the proposed method outperforms other methods in aspects such as estimating the number of QTLs, the accuracy of the QTLs’ position and the estimate of their effects. The results of the application of the proposed method to data sets exceeded all of our expectations.


2021 ◽  
Author(s):  
Pierre Sakic ◽  
Gustavo Mansur ◽  
Benjamin Männel ◽  
Andreas Brack ◽  
Harald Schuh

Over the past years, the International GNSS Service (IGS) has put efforts into reprocessing campaigns reanalyzing the full data collected by the IGS network since 1994. The goal is to provide a consistent set of orbits, station coordinates, and earth rotation parameters using state-of-the-art models. Different from the previous campaigns - namely: repro1 and repro2 - the repro3 includes not only GPS and GLONASS but also the Galileo constellation. The main repro3 objective is the contribution to the next realization of the International Terrestrial Reference Frame (ITRF2020). To achieve this goal, several Analysis Centers (AC) submitted their specific products, which are combined to provide the final solutions for each product type. In this contribution, we focus on the combination of the orbit products.We will present a consistent orbit solution based on a newly developed combination strategy where the weights are determined by a Least-Squares Variance Component Estimation (LSVCE). The orbits are combined in an iterative processing, first aligning all the products via a Helmert transformation, second defining which satellites will be used in the LSVCE, and finally normalizing the inverse of the variances as weights that are used to compute a weighted mean. Moreover, we will discuss the weight factors and their stability in the time evolution for each AC depending on the constellations. In addition, an external validation using a Satellite Laser Ranging (SLR) procedure will be shown for the combined solution.


2021 ◽  
Author(s):  
Pierre Sakic ◽  
Gustavo Mansur ◽  
Benjamin Männel ◽  
Andreas Brack ◽  
Harald Schuh

Over the past years, the International GNSS Service (IGS) has put efforts into reprocessing campaigns reanalyzing the full data collected by the IGS network since 1994. The goal is to provide a consistent set of orbits, station coordinates, and earth rotation parameters using state-of-the-art models. Different from the previous campaigns - namely: repro1 and repro2 - the repro3 includes not only GPS and GLONASS but also the Galileo constellation. The main repro3 objective is the contribution to the next realization of the International Terrestrial Reference Frame (ITRF2020). To achieve this goal, several Analysis Centers (AC) submitted their specific products, which are combined to provide the final solutions for each product type. In this contribution, we focus on the combination of the orbit products.We will present a consistent orbit solution based on a newly developed combination strategy where the weights are determined by a Least-Squares Variance Component Estimation (LSVCE). The orbits are combined in an iterative processing, first aligning all the products via a Helmert transformation, second defining which satellites will be used in the LSVCE, and finally normalizing the inverse of the variances as weights that are used to compute a weighted mean. Moreover, we will discuss the weight factors and their stability in the time evolution for each AC depending on the constellations. In addition, an external validation using a Satellite Laser Ranging (SLR) procedure will be shown for the combined solution.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Miguel Pérez-Enciso ◽  
Laura M. Zingaretti ◽  
Yuliaxis Ramayo-Caldas ◽  
Gustavo de los Campos

Abstract Background Analysis and prediction of complex traits using microbiome data combined with host genomic information is a topic of utmost interest. However, numerous questions remain to be answered: how useful can the microbiome be for complex trait prediction? Are estimates of microbiability reliable? Can the underlying biological links between the host’s genome, microbiome, and phenome be recovered? Methods Here, we address these issues by (i) developing a novel simulation strategy that uses real microbiome and genotype data as inputs, and (ii) using variance-component approaches (Bayesian Reproducing Kernel Hilbert Space (RKHS) and Bayesian variable selection methods (Bayes C)) to quantify the proportion of phenotypic variance explained by the genome and the microbiome. The proposed simulation approach can mimic genetic links between the microbiome and genotype data by a permutation procedure that retains the distributional properties of the data. Results Using real genotype and rumen microbiota abundances from dairy cattle, simulation results suggest that microbiome data can significantly improve the accuracy of phenotype predictions, regardless of whether some microbiota abundances are under direct genetic control by the host or not. This improvement depends logically on the microbiome being stable over time. Overall, random-effects linear methods appear robust for variance components estimation, in spite of the typically highly leptokurtic distribution of microbiota abundances. The predictive performance of Bayes C was higher but more sensitive to the number of causative effects than RKHS. Accuracy with Bayes C depended, in part, on the number of microorganisms’ taxa that influence the phenotype. Conclusions While we conclude that, overall, genome-microbiome-links can be characterized using variance component estimates, we are less optimistic about the possibility of identifying the causative host genetic effects that affect microbiota abundances, which would require much larger sample sizes than are typically available for genome-microbiome-phenome studies. The R code to replicate the analyses is in https://github.com/miguelperezenciso/simubiome.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Carsten Scheper ◽  
Reiner Emmerling ◽  
Kay-Uwe Götz ◽  
Sven König

Abstract Background Managing beneficial Mendelian characteristics in dairy cattle breeding programs implies that the correlated genetic effects are considered to avoid possible adverse effects in selection processes. The Mendelian trait polledness in cattle is traditionally associated with the belief that the polled locus has unfavorable effects on breeding goal traits. This may be due to the inferior breeding values of former polled bulls and cows in cattle breeds, such as German Simmental, or to pleiotropic or linkage effects of the polled locus. Methods We focused on a variance component estimation approach that uses a marker-based numerator relationship matrix reflecting gametic relationships at the polled locus to test for direct pleiotropic or linked quantitative trait loci (QTL) effects of the polled locus on relevant traits. We applied the approach to performance, health, and female fertility traits in German Simmental cattle. Results Our results showed no evidence for any pleiotropic QTL effects of the polled locus on test-day production traits milk yield and fat percentage, on the mastitis indicator ‘somatic cell score’, and on several female fertility traits, i.e. 56 days non return rate, days open and days to first service. We detected a significant and unfavorable QTL effect accounting for 6.6% of the genetic variance for protein percentage only. Conclusions Pleiotropy does not explain the lower breeding values and phenotypic inferiority of polled German Simmental sires and cows relative to the horned population in the breed. Thus, intensified selection in the polled population will contribute to increased selection response in breeding goal traits and genetic merit and will narrow the deficit in breeding values for production traits.


2021 ◽  
Author(s):  
Bastian Jaeger ◽  
Matti Wilks

People’s treatment of others—humans, animals, or other targets—often depends on whether they think the entity is worthy of moral consideration. Recent work has begun to examine which factors determine whether an entity is included in people’s moral circle. Here, we rely on multilevel modeling to map the variance components of the moral circle. We examine how much variance in moral concern is explained by who is being judged (i.e., between-target differences), by who is making the judgment (i.e., between-judge differences), and by their interaction. Two studies with participants from the Netherlands, the United States, the United Kingdom, and Australia (N = 836) show that all three components explain substantial amounts of variance in judgments of moral concern. Few cross-country differences emerged. Thus, to accurately predict when people grant moral standing to a target, characteristics of the target, characteristics of the judge, and their interaction need to be considered.


2021 ◽  
pp. 1-16
Author(s):  
Hong Hu ◽  
Xuefeng Xie ◽  
Jingxiang Gao ◽  
Shuanggen Jin ◽  
Peng Jiang

Abstract Stochastic models are essential for precise navigation and positioning of the global navigation satellite system (GNSS). A stochastic model can influence the resolution of ambiguity, which is a key step in GNSS positioning. Most of the existing multi-GNSS stochastic models are based on the GPS empirical model, while differences in the precision of observations among different systems are not considered. In this paper, three refined stochastic models, namely the variance components between systems (RSM1), the variances of different types of observations (RSM2) and the variances of observations for each satellite (RSM3) are proposed based on the least-squares variance component estimation (LS-VCE). Zero-baseline and short-baseline GNSS experimental data were used to verify the proposed three refined stochastic models. The results show that, compared with the traditional elevation-dependent model (EDM), though the proposed models do not significantly improve the ambiguity resolution success rate, the positioning precision of the three proposed models has been improved. RSM3, which is more realistic for the data itself, performs the best, and the precision at elevation mask angles 20°, 30°, 40°, 50° can be improved by 4⋅6%, 7⋅6%, 13⋅2%, 73⋅0% for L1-B1-E1 and 1⋅1%, 4⋅8%, 16⋅3%, 64⋅5% for L2-B2-E5a, respectively.


Sign in / Sign up

Export Citation Format

Share Document