scholarly journals B-maximal commutators, commutators of B-singular integral operators and B-Riesz potentials on B-Morrey spaces

2020 ◽  
Vol 18 (1) ◽  
pp. 715-730
Author(s):  
Javanshir J. Hasanov ◽  
Rabil Ayazoglu ◽  
Simten Bayrakci

Abstract In this article, we consider the Laplace-Bessel differential operator {\Delta }_{{B}_{k,n}}=\mathop{\sum }\limits_{i=1}^{k}\left(\frac{{\partial }^{2}}{\partial {x}_{i}^{2}}+\frac{{\gamma }_{i}}{{x}_{i}}\frac{\partial }{\partial {x}_{i}}\right)+\mathop{\sum }\limits_{i=k+1}^{n}\frac{{\partial }^{2}}{\partial {x}_{i}^{2}},{\gamma }_{1}\gt 0,\ldots ,{\gamma }_{k}\gt 0. Furthermore, we define B-maximal commutators, commutators of B-singular integral operators and B-Riesz potentials associated with the Laplace-Bessel differential operator. Moreover, we also obtain the boundedness of the B-maximal commutator {M}_{b,\gamma } and the commutator {[}b,{A}_{\gamma }] of the B-singular integral operator and Hardy-Littlewood-Sobolev-type theorem for the commutator {[}b,{I}_{\alpha ,\gamma }] of the B-Riesz potential on B-Morrey spaces {L}_{p,\lambda ,\gamma } , when b\in {\text{BMO}}_{\gamma } .

2020 ◽  
Vol 70 (4) ◽  
pp. 893-902
Author(s):  
Ismail Ekincioglu ◽  
Vagif S. Guliyev ◽  
Esra Kaya

AbstractIn this paper, we prove the boundedness of the Bn maximal operator and Bn singular integral operators associated with the Laplace-Bessel differential operator ΔBn on variable exponent Lebesgue spaces.


2017 ◽  
Vol 15 (1) ◽  
pp. 987-1002
Author(s):  
Seyda Keles ◽  
Mehriban N. Omarova

Abstract We study the vector-valued B-singular integral operators associated with the Laplace-Bessel differential operator $$\triangle_{B}=\sum\limits_{k=1}^{n-1}\frac{\partial^{2}}{\partial x_{k}^{2}}+(\frac{\partial^{2}}{\partial x_{n}^{2}}+\frac{2v}{x_{n}}\frac{\partial}{\partial x_{n}}) , v>0.$$ We prove the boundedness of vector-valued B-singular integral operators A from $L_{p,v}(\mathbb{R}_{+}^{n}, H_{1}) \,{\rm to}\, L_{p,v}(\mathbb{R}_{+}^{n}, H_{2}),$ 1 < p < ∞, where H1 and H2 are separable Hilbert spaces.


2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Rabil Ayazoglu (Mashiyev) ◽  
Javanshir J. Hasanov

AbstractWe consider the generalized shift operator associated with the Laplace–Bessel differential operator


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1455
Author(s):  
Yongliang Zhou ◽  
Dunyan Yan ◽  
Mingquan Wei

In this paper, we establish the boundedness of a class of oscillatory singular integral operators with rough kernel on central Morrey spaces. Moreover, the boundedness for each of their commutators on weighted central Morrey spaces was also obtained. We generalized some existing results.


2016 ◽  
Vol 2016 ◽  
pp. 1-13
Author(s):  
Sha He ◽  
Xiangxing Tao

We study some multilinear operators with rough kernels. For the multilinear fractional integral operatorsTΩ,αAand the multilinear fractional maximal integral operatorsMΩ,αA, we obtain their boundedness on weighted Morrey spaces with two weightsLp,κ(u,v)whenDγA∈Λ˙β  (|γ|=m-1)orDγA∈BMO  (|γ|=m-1). For the multilinear singular integral operatorsTΩAand the multilinear maximal singular integral operatorsMΩA, we show they are bounded on weighted Morrey spaces with two weightsLp,κ(u,v)ifDγA∈Λ˙β  (|γ|=m-1)and bounded on weighted Morrey spaces with one weightLp,κ(w)ifDγA∈BMO  (|γ|=m-1)form=1,2.


Sign in / Sign up

Export Citation Format

Share Document