scholarly journals On stochastic inverse problem of construction of stable program motion

2021 ◽  
Vol 19 (1) ◽  
pp. 157-162
Author(s):  
Marat I. Tleubergenov ◽  
Gulmira K. Vassilina

Abstract One of the inverse problems of dynamics in the presence of random perturbations is considered. This is the problem of the simultaneous construction of a set of first-order Ito stochastic differential equations with a given integral manifold, and a set of comparison functions. The given manifold is stable in probability with respect to these comparison functions.

2020 ◽  
Vol 28 (5) ◽  
pp. 727-738
Author(s):  
Victor Sadovnichii ◽  
Yaudat Talgatovich Sultanaev ◽  
Azamat Akhtyamov

AbstractWe consider a new class of inverse problems on the recovery of the coefficients of differential equations from a finite set of eigenvalues of a boundary value problem with unseparated boundary conditions. A finite number of eigenvalues is possible only for problems in which the roots of the characteristic equation are multiple. The article describes solutions to such a problem for equations of the second, third, and fourth orders on a graph with three, four, and five edges. The inverse problem with an arbitrary number of edges is solved similarly.


1989 ◽  
Vol 57 (1-2) ◽  
pp. 347-356 ◽  
Author(s):  
S. Albeverio ◽  
Ph. Blanchard ◽  
S. Kusuoka ◽  
L. Streit

2019 ◽  
Vol 27 (3) ◽  
pp. 439-443
Author(s):  
Vjacheslav Yurko

Abstract Second order differential operators on the half-line with complex-valued weights are considered. Properties of spectral characteristics are established, and the inverse problem of recovering operator’s coefficients from the given Weyl-type function is studied. The uniqueness theorem is proved for this class of nonlinear inverse problems, and a number of examples are provided.


1875 ◽  
Vol 23 (156-163) ◽  
pp. 510-510

Given an equation of the form z = ϕ ( x 1 , x 2 , ..... x n+m , a 1 , a 2 ,. . . . a n ), we obtain by differentiation with respect to each of the n + m independent variables x 1 , x 2 , ..... x n+m , and elimination of the n arbitrary constant a 1 , a 2 ,. . . . a n a system of m +1 non-linear partial differential equations of the first order. Of this system the given equation may be said to be "complete primitive.”


1989 ◽  
Vol 113 ◽  
pp. 1-6 ◽  
Author(s):  
Keiji Nishioka

In his famous lectures [7] Painlevé investigates general solutions of algebraic differential equations which depend algebraically on some of arbitrary constants. Although his discussions are beyond our understanding, the rigorous and accurate interpretation to make his intuition true would be possible. Successful accomplishments have been done by some authors, for example, Kimura [1], Umemura [8, 9]. From differential algebraic viewpoint in [5] the author introduces the notion of rational dependence on arbitrary constants of general solutions of algebraic differential equations, and in [6] clarifies the relation between it and the notion of strong normality. Here we aim at generalizing to higher order case the result in [4] that in the first order case solutions of equations depend algebraically on those of equations free from moving singularities which are determined uniquely as the closest ones to the given. Part of our result can be seen in [7].


Sign in / Sign up

Export Citation Format

Share Document