random perturbations
Recently Published Documents


TOTAL DOCUMENTS

517
(FIVE YEARS 68)

H-INDEX

30
(FIVE YEARS 3)

Author(s):  
Andrew Larkin

AbstractWe study rates of mixing for small random perturbations of one-dimensional Lorenz maps. Using a random tower construction, we prove that, for Hölder observables, the random system admits exponential rates of quenched correlation decay.


2021 ◽  
Author(s):  
Daniel Hasegan ◽  
Matt Deible ◽  
Christopher Earl ◽  
David D'Onofrio ◽  
Hananel Hazan ◽  
...  

Biological learning operates at multiple interlocking timescales, from long evolutionary stretches down to the relatively short time span of an individual's life. While each process has been simulated individually as a basic learning algorithm in the context of spiking neuronal networks (SNNs), the integration of the two has remained limited. In this study, we first train SNNs separately using individual model learning using spike-timing dependent reinforcement learning (STDP-RL) and evolutionary (EVOL) learning algorithms to solve the CartPole reinforcement learning (RL) control problem. We then develop an interleaved algorithm inspired by biological evolution that combines the EVOL and STDP-RL learning in sequence. We use the NEURON simulator with NetPyNE to create an SNN interfaced with the CartPole environment from OpenAI's Gym. In CartPole, the goal is to balance a vertical pole by moving left/right on a 1-D plane. Our SNN contains multiple populations of neurons organized in three layers: sensory layer, association/hidden layer, and motor layer, where neurons are connected by excitatory (AMPA/NMDA) and inhibitory (GABA) synapses. Association and motor layers contain one excitatory (E) population and two inhibitory (I) populations with different synaptic time constants. Each neuron is an event-based integrate-and-fire model with plastic connections between excitatory neurons. In our SNN, the environment activates sensory neurons tuned to specific features of the game state. We split the motor population into subsets representing each movement choice. The subset with more spiking over an interval determines the action. During STDP-RL, we supply intermediary evaluations (reward/punishment) of each action by judging the effectiveness of a move (e.g., moving the CartPole to a balanced position). During EVOL, updates consist of adding together many random perturbations of the connection weights. Each set of random perturbations is weighted by the total episodic reward it achieves when applied independently. We evaluate the performance of each algorithm after training and through the creation of sensory/motor action maps that delineate the network's transformation of sensory inputs into higher-order representations and eventual motor decisions. Both EVOL and STDP-RL training produce SNNs capable of moving the cart left and right and keeping the pole vertical. Compared to the STDP-RL and EVOL algorithms operating on their own, our interleaved training paradigm produced enhanced robustness in performance, with different strategies revealed through analysis of the sensory/motor mappings. Analysis of synaptic weight matrices also shows distributed vs clustered representations after the EVOL and STDP-RL algorithms, respectively. These weight differences also manifest as diffuse vs synchronized firing patterns. Our modeling opens up new capabilities for SNNs in RL and could serve as a testbed for neurobiologists aiming to understand multi-timescale learning mechanisms and dynamics in neuronal circuits.


Fractals ◽  
2021 ◽  
Author(s):  
AMIR KHAN ◽  
HEDAYAT ULLAH ◽  
MOSTAFA ZAHRI ◽  
USA WANNASINGHA HUMPHRIES ◽  
TOURIA KARITE ◽  
...  

The aim of this paper is to model corona-virus (COVID-19) taking into account random perturbations. The suggested model is composed of four different classes i.e. the susceptible population, the smart lockdown class, the infectious population, and the recovered population. We investigate the proposed problem for the derivation of at least one unique solution in the positive feasible region of nonlocal solution. For one stationary ergodic distribution, the necessary result of existence is developed by applying the Lyapunov function and the condition for the extinction of the disease is also established. The obtained results show that the effect of Brownian motion and noise terms on the transmission of the epidemic is very high. If the noise is large the infection may decrease or vanish. For validation of our obtained scheme, the results for all the classes of the problem have been simulated numerically.


Author(s):  
J. Liñares ◽  
G. M. Carral ◽  
X. Prieto-Blanco ◽  
D. Balado

AbstractSingle photon or biphoton states propagating in optical fibers or in free space are affected by random perturbations and imperfections that disturb the information encoded in such states and accordingly quantum key distribution is prevented. We propose three different systems for autocompensating such random perturbations and imperfections when a measurement-device-independent protocol is used. These systems correspond to different optical fibers intended for space division multiplexing and supporting collinear modes, polarization modes or codirectional modes such as few-mode optical fibers and multicore optical fibers. Accordingly, we propose different Bell-states measurement devices located at Charlie system and present simulations that confirm the importance of autocompensation. Moreover, these types of optical fibers allow the use of several transmission channels, which compensates the reduction of the bit rate due to losses.


2021 ◽  
Vol 24 (3) ◽  
Author(s):  
Alexander Dicke

AbstractIn this note, a Wegner estimate for random divergence-type operators that are monotone in the randomness is proven. The proof is based on a recently shown unique continuation estimate for the gradient and the ensuing eigenvalue liftings. The random model which is studied here contains quite general random perturbations, among others, some that have a non-linear dependence on the random parameters.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Andrés Ríos-Gutiérrez ◽  
Soledad Torres ◽  
Viswanathan Arunachalam

AbstractIn this paper, we discuss the basic reproduction number of stochastic epidemic models with random perturbations. We define the basic reproduction number in epidemic models by using the integral of a function or survival function. We study the systems of stochastic differential equations for SIR, SIS, and SEIR models and their stability analysis. Some results on deterministic epidemic models are also obtained. We give the numerical conditions for which the disease-free equilibrium point is asymptotically stable.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Xiaodong Wang ◽  
Chunxia Wang ◽  
Kai Wang

AbstractIn this paper, a stochastic SICA epidemic model with standard incidence rate for HIV transmission is proposed. The sufficient conditions of the extinction and persistence in mean for the disease are established. Numerical simulations show that random perturbations can suppress disease outbreaks and the risk of HIV transmission can be reduced by reducing the transmission coefficient of HIV while increasing the strength of the stochastic perturbation.


Sign in / Sign up

Export Citation Format

Share Document