scholarly journals Optimal switching problems under partial information

2015 ◽  
Vol 21 (2) ◽  
Author(s):  
Kai Li ◽  
Kaj Nyström ◽  
Marcus Olofsson

AbstractIn this paper, we formulate and study an optimal switching problem under partial information. In our model, the agent/manager/investor attempts to maximize the expected reward by switching between different states/investments. However, he is not fully aware of his environment and only an observation process, which contains partial information about the environment/underlying, is accessible. It is based on the partial information carried by this observation process that all decisions must be made. We propose a probabilistic numerical algorithm, based on dynamic programming, regression Monte Carlo methods, and stochastic filtering theory, to compute the value function. In this paper, the approximation of the value function and the corresponding convergence result are obtained when the underlying and observation processes satisfy the linear Kalman–Bucy setting. A numerical example is included to show some specific features of partial information.

Author(s):  
Zhili Tian ◽  
Weidong Han ◽  
Warren B. Powell

Problem definition: Clinical trials are crucial to new drug development. This study investigates optimal patient enrollment in clinical trials with interim analyses, which are analyses of treatment responses from patients at intermediate points. Our model considers uncertainties in patient enrollment and drug treatment effectiveness. We consider the benefits of completing a trial early and the cost of accelerating a trial by maximizing the net present value of drug cumulative profit. Academic/practical relevance: Clinical trials frequently account for the largest cost in drug development, and patient enrollment is an important problem in trial management. Our study develops a dynamic program, accurately capturing the dynamics of the problem, to optimize patient enrollment while learning the treatment effectiveness of an investigated drug. Methodology: The model explicitly captures both the physical state (enrolled patients) and belief states about the effectiveness of the investigated drug and a standard treatment drug. Using Bayesian updates and dynamic programming, we establish monotonicity of the value function in state variables and characterize an optimal enrollment policy. We also introduce, for the first time, the use of backward approximate dynamic programming (ADP) for this problem class. We illustrate the findings using a clinical trial program from a leading firm. Our study performs sensitivity analyses of the input parameters on the optimal enrollment policy. Results: The value function is monotonic in cumulative patient enrollment and the average responses of treatment for the investigated drug and standard treatment drug. The optimal enrollment policy is nondecreasing in the average response from patients using the investigated drug and is nonincreasing in cumulative patient enrollment in periods between two successive interim analyses. The forward ADP algorithm (or backward ADP algorithm) exploiting the monotonicity of the value function reduced the run time from 1.5 months using the exact method to a day (or 20 minutes) within 4% of the exact method. Through an application to a leading firm’s clinical trial program, the study demonstrates that the firm can have a sizable gain of drug profit following the optimal policy that our model provides. Managerial implications: We developed a new model for improving the management of clinical trials. Our study provides insights of an optimal policy and insights into the sensitivity of value function to the dropout rate and prior probability distribution. A firm can have a sizable gain in the drug’s profit by managing its trials using the optimal policies and the properties of value function. We illustrated that firms can use the ADP algorithms to develop their patient enrollment strategies.


1998 ◽  
Vol 35 (04) ◽  
pp. 873-884 ◽  
Author(s):  
P. Del Moral

The filtering problem concerns the estimation of a stochastic process X from its noisy partial information Y. With the notable exception of the linear-Gaussian situation, general optimal filters have no finitely recursive solution. The aim of this work is the design of a Monte Carlo particle system approach to solve discrete time and nonlinear filtering problems. The main result is a uniform convergence theorem. We introduce a concept of regularity and we give a simple ergodic condition on the signal semigroup for the Monte Carlo particle filter to converge in law and uniformly with respect to time to the optimal filter, yielding what seems to be the first uniform convergence result for a particle approximation of the nonlinear filtering equation.


2020 ◽  
Vol 26 ◽  
pp. 109
Author(s):  
Manil T. Mohan

In this work, we consider the controlled two dimensional tidal dynamics equations in bounded domains. A distributed optimal control problem is formulated as the minimization of a suitable cost functional subject to the controlled 2D tidal dynamics equations. The existence of an optimal control is shown and the dynamic programming method for the optimal control of 2D tidal dynamics system is also described. We show that the feedback control can be obtained from the solution of an infinite dimensional Hamilton-Jacobi equation. The non-differentiability and lack of smoothness of the value function forced us to use the method of viscosity solutions to obtain a solution of the infinite dimensional Hamilton-Jacobi equation. The Bellman principle of optimality for the value function is also obtained. We show that a viscosity solution to the Hamilton-Jacobi equation can be used to derive the Pontryagin maximum principle, which give us the first order necessary conditions of optimality. Finally, we characterize the optimal control using the adjoint variable.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lucas Izydorczyk ◽  
Nadia Oudjane ◽  
Francesco Russo

Abstract We propose a fully backward representation of semilinear PDEs with application to stochastic control. Based on this, we develop a fully backward Monte-Carlo scheme allowing to generate the regression grid, backwardly in time, as the value function is computed. This offers two key advantages in terms of computational efficiency and memory. First, the grid is generated adaptively in the areas of interest, and second, there is no need to store the entire grid. The performances of this technique are compared in simulations to the traditional Monte-Carlo forward-backward approach on a control problem of thermostatic loads.


Author(s):  
Min Sun

AbstractWe consider in this article an evolutionary monotone follower problem in [0,1]. State processes under consideration are controlled diffusion processes , solutions of dyx(t) = g(yx(t), t)dt + σu(yx(t), t) dwt + dυt with yx(0) = x ∈[0, 1], where the control processes υt are increasing, positive, and adapted. The cost functional is of integral type, with certain explicit cost of control action including the cost of jumps. We shall present some analytic results of the value function, mainly its characterisation, by standard dynamic programming arguments.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yanan Li

This paper examines the optimal annuitization, investment, and consumption strategies of an individual facing a time-dependent mortality rate in the tax-deferred annuity model and considers both the case when the rate of buying annuities is unrestricted and the case when it is restricted. At the beginning, by using the dynamic programming principle, we obtain the corresponding HJB equation. Since the existence of the tax and the time-dependence of the value function make the corresponding HJB equation hard to solve, firstly, we analyze the problem in a simpler case and use some numerical methods to get the solution and some of its useful properties. Then, by using the obtained properties and Kuhn–Tucker conditions, we discuss the problem in general cases and get the value functions and the optimal annuitization strategies, respectively.


2020 ◽  
Vol 26 ◽  
pp. 25
Author(s):  
Alessandro Calvia

We consider an infinite horizon optimal control problem for a pure jump Markov process X, taking values in a complete and separable metric space I, with noise-free partial observation. The observation process is defined as Yt = h(Xt), t ≥ 0, where h is a given map defined on I. The observation is noise-free in the sense that the only source of randomness is the process X itself. The aim is to minimize a discounted cost functional. In the first part of the paper we write down an explicit filtering equation and characterize the filtering process as a Piecewise Deterministic Process. In the second part, after transforming the original control problem with partial observation into one with complete observation (the separated problem) using filtering equations, we prove the equivalence of the original and separated problems through an explicit formula linking their respective value functions. The value function of the separated problem is also characterized as the unique fixed point of a suitably defined contraction mapping.


Sign in / Sign up

Export Citation Format

Share Document