dynamic programming principle
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 42)

H-INDEX

13
(FIVE YEARS 2)

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Jun Moon

AbstractWe consider the optimal control problem for stochastic differential equations (SDEs) with random coefficients under the recursive-type objective functional captured by the backward SDE (BSDE). Due to the random coefficients, the associated Hamilton–Jacobi–Bellman (HJB) equation is a class of second-order stochastic PDEs (SPDEs) driven by Brownian motion, which we call the stochastic HJB (SHJB) equation. In addition, as we adopt the recursive-type objective functional, the drift term of the SHJB equation depends on the second component of its solution. These two generalizations cause several technical intricacies, which do not appear in the existing literature. We prove the dynamic programming principle (DPP) for the value function, for which unlike the existing literature we have to use the backward semigroup associated with the recursive-type objective functional. By the DPP, we are able to show the continuity of the value function. Using the Itô–Kunita’s formula, we prove the verification theorem, which constitutes a sufficient condition for optimality and characterizes the value function, provided that the smooth (classical) solution of the SHJB equation exists. In general, the smooth solution of the SHJB equation may not exist. Hence, we study the existence and uniqueness of the solution to the SHJB equation under two different weak solution concepts. First, we show, under appropriate assumptions, the existence and uniqueness of the weak solution via the Sobolev space technique, which requires converting the SHJB equation to a class of backward stochastic evolution equations. The second result is obtained under the notion of viscosity solutions, which is an extension of the classical one to the case for SPDEs. Using the DPP and the estimates of BSDEs, we prove that the value function is the viscosity solution to the SHJB equation. For applications, we consider the linear-quadratic problem, the utility maximization problem, and the European option pricing problem. Specifically, different from the existing literature, each problem is formulated by the generalized recursive-type objective functional and is subject to random coefficients. By applying the theoretical results of this paper, we obtain the explicit optimal solution for each problem in terms of the solution of the corresponding SHJB equation.


2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Hanlei Hu ◽  
Shaoyong Lai ◽  
Hongjing Chen

This paper considers the reinsurance-investment problem with interest rate risks under constant relative risk aversion and constant absolute risk aversion preferences, respectively. Stochastic control theory and dynamic programming principle are applied to investigate the optimal proportional reinsurance-investment strategy for an insurer under the Vasicek stochastic interest rate model. Solving the corresponding Hamilton-Jacobi-Bellman equation via the Legendre transform approach, the optimal premium allocation strategies maximizing the expected utilities of terminal wealth are derived. In addition, several sensitivity analyses and numerical illustrations are given to analyze the impacts of different risk preferences and interest rate fluctuation on the optimal strategies. We find that the asset allocation and reinsurance ratio of the insurer are correlated with risk preference coefficient and interest rate fluctuation, and the insurance company may adjust the reinsurance-investment strategy to deal with interest rate risk.


Risks ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 15
Author(s):  
Areski Cousin ◽  
Ying Jiao ◽  
Christian Yann Robert ◽  
Olivier David Zerbib

This paper investigates the optimal asset allocation of a financial institution whose customers are free to withdraw their capital-guaranteed financial contracts at any time. In accounting for the asset-liability mismatch risk of the institution, we present a general utility optimization problem in a discrete-time setting and provide a dynamic programming principle for the optimal investment strategies. Furthermore, we consider an explicit context, including liquidity risk, interest rate, and credit intensity fluctuations, and show by numerical results that the optimal strategy improves both the solvency and asset returns of the institution compared to a standard institutional investor’s asset allocation.


Author(s):  
Yue Zhou ◽  
Xinwei Feng ◽  
Jiongmin Yong

Deterministic optimal impulse control problem with terminal state constraint is considered. Due to the appearance of the terminal state constraint, the value function might be discontinuous in general. The main contribution of this paper is the introduction of an intrinsic condition under which the value function is proved to be continuous. Then by a Bellman dynamic programming principle, the corresponding Hamilton-Jacobi-Bellman type quasi-variational inequality (QVI, for short) is derived. The value function is proved to be a viscosity solution to such a QVI. The issue of whether the value function is characterized as the unique viscosity solution to this QVI is carefully addressed and the answer is left open challengingly.


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2918
Author(s):  
Jun Moon ◽  
Jin-Ho Chung

In this paper, we study the indefinite linear-quadratic (LQ) stochastic optimal control problem for stochastic differential equations (SDEs) with jump diffusions and random coefficients driven by both the Brownian motion and the (compensated) Poisson process. In our problem setup, the coefficients in the SDE and the objective functional are allowed to be random, and the jump-diffusion part of the SDE depends on the state and control variables. Moreover, the cost parameters in the objective functional need not be (positive) definite matrices. Although the solution to this problem can also be obtained through the stochastic maximum principle or the dynamic programming principle, our approach is simple and direct. In particular, by using the Itô-Wentzell’s formula, together with the integro-type stochastic Riccati differential equation (ISRDE) and the backward SDE (BSDE) with jump diffusions, we obtain the equivalent objective functional that is quadratic in control u under the positive definiteness condition, where the approach is known as the completion of squares method. Then the explicit optimal solution, which is linear in state characterized by the ISRDE and the BSDE jump diffusions, and the associated optimal cost are derived by eliminating the quadratic term of u in the equivalent objective functional. We also verify the optimality of the proposed solution via the verification theorem, which requires solving the stochastic HJB equation, a class of stochastic partial differential equations with jump diffusions.


2021 ◽  
Vol 63 ◽  
pp. 308-332
Author(s):  
Caibin Zhang ◽  
Zhibin Liang ◽  
Kam Chuen Yuen

We consider the optimal portfolio and consumption problem for a jump-diffusion process with regime switching. Under the criterion of maximizing the expected discounted total utility of consumption, two methods, namely, the dynamic programming principle and the stochastic maximum principle, are used to obtain the optimal result for the general objective function, which is the solution to a system of partial differential equations. Furthermore, we investigate the power utility as a specific example and analyse the existence and uniqueness of the optimal solution. Under the constraints of no-short-selling and nonnegative consumption, closed-form expressions for the optimal strategy and the value function are derived. Besides, some comparisons between the optimal results for the jump-diffusion model and the pure diffusion model are carried out. Finally, we discuss our optimal results in some special cases.   doi:10.1017/S1446181121000122


Author(s):  
Zachary Feinstein ◽  
Birgit Rudloff ◽  
Jianfeng Zhang

Nonzero sum games typically have multiple Nash equilibriums (or no equilibrium), and unlike the zero-sum case, they may have different values at different equilibriums. Instead of focusing on the existence of individual equilibriums, we study the set of values over all equilibriums, which we call the set value of the game. The set value is unique by nature and always exists (with possible value [Formula: see text]). Similar to the standard value function in control literature, it enjoys many nice properties, such as regularity, stability, and more importantly, the dynamic programming principle. There are two main features in order to obtain the dynamic programming principle: (i) we must use closed-loop controls (instead of open-loop controls); and (ii) we must allow for path dependent controls, even if the problem is in a state-dependent (Markovian) setting. We shall consider both discrete and continuous time models with finite time horizon. For the latter, we will also provide a duality approach through certain standard PDE (or path-dependent PDE), which is quite efficient for numerically computing the set value of the game.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yanan Li ◽  
Chuanzheng Li

This paper considers the principle-agent conflict problem in a continuous-time delegated asset management model when the investor and the fund manager are all risk-averse with risk sensitivity coefficients γ f  and  γ m , respectively. Suppose that the investor entrusts his money to the fund manager. The return of the investment is determined by the manager’s effort level and incentive strategy, but the benefit belongs to the investor. In order to encourage the manager to work hard, the investor will determine the manager’s salary according to the terminal income. This is a stochastic differential game problem, and the distribution of income between the manager and the investor is a key point to be solved in the custody model. The uncertain form of the incentive strategy implies that the problem is different from the classical stochastic optimal control problem. In this paper, we first express the investor’s incentive strategy in term of two auxiliary processes and turn this problem into a classical one. Then, we employ the dynamic programming principle to solve the problem.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yanan Li

This paper examines the optimal annuitization, investment, and consumption strategies of an individual facing a time-dependent mortality rate in the tax-deferred annuity model and considers both the case when the rate of buying annuities is unrestricted and the case when it is restricted. At the beginning, by using the dynamic programming principle, we obtain the corresponding HJB equation. Since the existence of the tax and the time-dependence of the value function make the corresponding HJB equation hard to solve, firstly, we analyze the problem in a simpler case and use some numerical methods to get the solution and some of its useful properties. Then, by using the obtained properties and Kuhn–Tucker conditions, we discuss the problem in general cases and get the value functions and the optimal annuitization strategies, respectively.


2021 ◽  
pp. 1-25
Author(s):  
CAIBIN ZHANG ◽  
ZHIBIN LIANG ◽  
KAM CHUEN YUEN

Abstract We consider the optimal portfolio and consumption problem for a jump-diffusion process with regime switching. Under the criterion of maximizing the expected discounted total utility of consumption, two methods, namely, the dynamic programming principle and the stochastic maximum principle, are used to obtain the optimal result for the general objective function, which is the solution to a system of partial differential equations. Furthermore, we investigate the power utility as a specific example and analyse the existence and uniqueness of the optimal solution. Under the constraints of no-short-selling and nonnegative consumption, closed-form expressions for the optimal strategy and the value function are derived. Besides, some comparisons between the optimal results for the jump-diffusion model and the pure diffusion model are carried out. Finally, we discuss our optimal results in some special cases.


Sign in / Sign up

Export Citation Format

Share Document