Random walk on ellipsoids method for solving elliptic and parabolic equations

2020 ◽  
Vol 26 (4) ◽  
pp. 335-353
Author(s):  
Irina Shalimova ◽  
Karl K. Sabelfeld

AbstractA Random Walk on Ellipsoids (RWE) algorithm is developed for solving a general class of elliptic equations involving second- and zero-order derivatives. Starting with elliptic equations with constant coefficients, we derive an integral equation which relates the solution in the center of an ellipsoid with the integral of the solution over an ellipsoid defined by the structure of the coefficients of the original differential equation. This integral relation is extended to parabolic equations where a first passage time distribution and survival probability are given in explicit forms. We suggest an efficient simulation method which implements the RWE algorithm by introducing a notion of a separation sphere. We prove that the logarithmic behavior of the mean number of steps for the RWS method remains true for the RWE algorithm. Finally we show how the developed RWE algorithm can be applied to solve elliptic and parabolic equations with variable coefficients. A series of supporting computer simulations are given.

2012 ◽  
Vol 22 (5) ◽  
pp. 1860-1879 ◽  
Author(s):  
Marat V. Burnashev ◽  
Aslan Tchamkerten

2018 ◽  
Vol 13 (1) ◽  
pp. 10 ◽  
Author(s):  
Pengbo Xu ◽  
Weihua Deng

For the particles undergoing the anomalous diffusion with different waiting time distributions for different internal states, we derive the Fokker-Planck and Feymann-Kac equations, respectively, describing positions of the particles and functional distributions of the trajectories of particles; in particular, the equations governing the functional distribution of internal states are also obtained. The dynamics of the stochastic processes are analyzed and the applications, calculating the distribution of the first passage time and the distribution of the fraction of the occupation time, of the equations are given. For the further application of the newly built models, we make very detailed discussions on the none-immediately-repeated stochastic process, e.g., the random walk of smart animals.


2014 ◽  
Vol 25 (09) ◽  
pp. 1450037 ◽  
Author(s):  
Feng Zhu ◽  
Meifeng Dai ◽  
Yujuan Dong ◽  
Jie Liu

This paper reports a weighted hierarchical network generated on the basis of self-similarity, in which each edge is assigned a different weight in the same scale. We studied two substantial properties of random walk: the first-passage time (FPT) between a hub node and a peripheral node and the FPT from a peripheral node to a local hub node over the network. Meanwhile, an analytical expression of the average sending time (AST) is deduced, which reflects the average value of FPT from a hub node to any other node. Our result shows that the AST from a hub node to any other node is related to the scale factor and the number of modules. We found that the AST grows sublinearly, linearly and superlinearly respectively with the network order, depending on the range of the scale factor. Our work may shed some light on revealing the diffusion process in hierarchical networks.


2019 ◽  
Vol 25 (3) ◽  
pp. 271-282
Author(s):  
Irina Shalimova ◽  
Karl K. Sabelfeld

Abstract A meshless stochastic algorithm for solving anisotropic transient diffusion problems based on an extension of the classical Random Walk on Spheres method is developed. Direct generalization of the Random Walk on Spheres method to anisotropic diffusion equations is not possible, therefore, we have derived approximations of the probability densities for the first passage time and the exit point on a small sphere. The method can be conveniently applied to solve diffusion problems with spatially varying diffusion coefficients and is simply implemented for complicated three-dimensional domains. Particle tracking algorithm is highly efficient for calculation of fluxes to boundaries. We present some simulation results in the case of cathodoluminescence and electron beam induced current in the vicinity of a dislocation in a semiconductor material.


Sign in / Sign up

Export Citation Format

Share Document