On EMV-Semirings

2019 ◽  
Vol 69 (4) ◽  
pp. 739-752 ◽  
Author(s):  
R. A. Borzooei ◽  
M. Shenavaei ◽  
A. Di Nola ◽  
O. Zahiri

Abstract The paper deals with an algebraic extension of MV-semirings based on the definition of generalized Boolean algebras. We propose a semiring-theoretic approach to EMV-algebras based on the connections between such algebras and idempotent semirings. We introduce a new algebraic structure, not necessarily with a top element, which is called an EMV-semiring and we get some examples and basic properties of EMV-semiring. We show that every EMV-semiring is an EMV-algebra and every EMV-semiring contains an MV-semiring and an MV-algebra. Then, we study EMV-semiring as a lattice and prove that any EMV-semiring is a distributive lattice. Moreover, we define an EMV-semiring homomorphism and show that the categories of EMV-semirings and the category of EMV-algebras are isomorphic. We also define the concepts of GI-simple and DLO-semiring and prove that every EMV-semiring is a GI-simple and a DLO-semiring. Finally, we propose a representation for EMV-semirings, which proves that any EMV-semiring is either an MV-semiring or can be embedded into an MV-semiring as a maximal ideal.

2021 ◽  
pp. 1-12
Author(s):  
Simin Saidi Goraghani ◽  
Rajab Ali Borzooei ◽  
Sun Shin Ahn

In recent years, A. Di Nola et al. studied the notions of MV-semiring and semimodules and investigated related results [9, 10, 12, 26]. Now in this paper, by using an MV-semiring and an MV-algebra, we introduce the new definition of MV-semimodule, study basic properties and find some examples. Then we study A-ideals on MV-semimodules and Q-ideals on MV-semirings, and by using them, we study the quotient structures of MV-semimodule. Finally, we present the notions of prime A-ideal, torsion free MV-semimodule and annihilator on MV-semimodule and we study the relations among them.


Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 515 ◽  
Author(s):  
Aykut Emniyet ◽  
Memet Şahin

In this paper, the concept of fuzzy normed ring is introduced and some basic properties related to it are established. Our definition of normed rings on fuzzy sets leads to a new structure, which we call a fuzzy normed ring. We define fuzzy normed ring homomorphism, fuzzy normed subring, fuzzy normed ideal, fuzzy normed prime ideal, and fuzzy normed maximal ideal of a normed ring, respectively. We show some algebraic properties of normed ring theory on fuzzy sets, prove theorems, and give relevant examples.


1992 ◽  
Vol 1 (4) ◽  
pp. 323-334 ◽  
Author(s):  
Péter L. Erdős ◽  
Ulrich Faigle ◽  
Walter Kern

Using a group-theoretic approach, we derive some Erdős-Ko-Rado-type results for certain Sperner families of chains and antichains in partial orders. In particular, we establish Bollobás-type inequalities for arbitrary Sperner families of intersecting affine subspaces, and special intersecting Sperner families in generalized Boolean algebras.


2020 ◽  
pp. 1-23
Author(s):  
TUYEN TRUNG TRUONG

Abstract A strong submeasure on a compact metric space X is a sub-linear and bounded operator on the space of continuous functions on X. A strong submeasure is positive if it is non-decreasing. By the Hahn–Banach theorem, a positive strong submeasure is the supremum of a non-empty collection of measures whose masses are uniformly bounded from above. There are many natural examples of continuous maps of the form $f:U\rightarrow X$ , where X is a compact metric space and $U\subset X$ is an open-dense subset, where f cannot extend to a reasonable function on X. We can mention cases such as transcendental maps of $\mathbb {C}$ , meromorphic maps on compact complex varieties, or continuous self-maps $f:U\rightarrow U$ of a dense open subset $U\subset X$ where X is a compact metric space. For the aforementioned mentioned the use of measures is not sufficient to establish the basic properties of ergodic theory, such as the existence of invariant measures or a reasonable definition of measure-theoretic entropy and topological entropy. In this paper we show that strong submeasures can be used to completely resolve the issue and establish these basic properties. In another paper we apply strong submeasures to the intersection of positive closed $(1,1)$ currents on compact Kähler manifolds.


Entropy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 526
Author(s):  
Gautam Aishwarya ◽  
Mokshay Madiman

The analogues of Arimoto’s definition of conditional Rényi entropy and Rényi mutual information are explored for abstract alphabets. These quantities, although dependent on the reference measure, have some useful properties similar to those known in the discrete setting. In addition to laying out some such basic properties and the relations to Rényi divergences, the relationships between the families of mutual informations defined by Sibson, Augustin-Csiszár, and Lapidoth-Pfister, as well as the corresponding capacities, are explored.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Xiao-Long Xin ◽  
Pu Wang

We define the notions of Bosbach states and inf-Bosbach states on a bounded hyper BCK-algebra(H,∘,0,e)and derive some basic properties of them. We construct a quotient hyper BCK-algebra via a regular congruence relation. We also define a∘-compatibledregular congruence relationθand aθ-compatibledinf-Bosbach stateson(H,∘,0,e). By inducing an inf-Bosbach states^on the quotient structureH/[0]θ, we show thatH/[0]θis a bounded commutative BCK-algebra which is categorically equivalent to an MV-algebra. In addition, we introduce the notions of hyper measures (states/measure morphisms/state morphisms) on hyper BCK-algebras, and present a relation between hyper state-morphisms and Bosbach states. Then we construct a quotient hyper BCK-algebraH/Ker(m)by a reflexive hyper BCK-idealKer(m). Further, we prove thatH/Ker(m)is a bounded commutative BCK-algebra.


Symmetry ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 417 ◽  
Author(s):  
Hu Zhao ◽  
Hong-Ying Zhang

As a generalization of single value neutrosophic rough sets, the concept of multi-granulation neutrosophic rough sets was proposed by Bo et al., and some basic properties of the pessimistic (optimistic) multigranulation neutrosophic rough approximation operators were studied. However, they did not do a comprehensive study on the algebraic structure of the pessimistic (optimistic) multigranulation neutrosophic rough approximation operators. In the present paper, we will provide the lattice structure of the pessimistic multigranulation neutrosophic rough approximation operators. In particular, in the one-dimensional case, for special neutrosophic relations, the completely lattice isomorphic relationship between upper neutrosophic rough approximation operators and lower neutrosophic rough approximation operators is proved.


2013 ◽  
Vol 21 (3) ◽  
pp. 185-191
Author(s):  
Keiko Narita ◽  
Noboru Endou ◽  
Yasunari Shidama

Summary In this article, we described basic properties of Riemann integral on functions from R into Real Banach Space. We proved mainly the linearity of integral operator about the integral of continuous functions on closed interval of the set of real numbers. These theorems were based on the article [10] and we referred to the former articles about Riemann integral. We applied definitions and theorems introduced in the article [9] and the article [11] to the proof. Using the definition of the article [10], we also proved some theorems on bounded functions.


2020 ◽  
Vol 25 (3) ◽  
pp. 1-15 ◽  
Author(s):  
Hanan Sabah Lazam ◽  
Salwa Salman Abed

In this article, we recall the definition of a real n-normed space and some basic properties. fixed point theorems for types of Kannan, Chatterge, Zamfirescu, -Weak contraction and  - (,)-Weak contraction mappings in  Banach spaces.


Author(s):  
Lew Gordeev ◽  
Edward Hermann Haeusler

We upgrade [3] to a complete proof of the conjecture NP = PSPACE that is known as one of the fundamental open problems in the mathematical theory of computational complexity; this proof is based on [2]. Since minimal propositional logic is known to be PSPACE complete, while PSPACE to include NP, it suffices to show that every valid purely implicational formula ρ has a proof whose weight (= total number of symbols) and time complexity of the provability involved are both polynomial in the weight of ρ. As in [3], we use proof theoretic approach. Recall that in [3] we considered any valid ρ in question that had (by the definition of validity) a "short" tree-like proof π in the Hudelmaier-style cutfree sequent calculus for minimal logic. The "shortness" means that the height of π and the total weight of different formulas occurring in it are both polynomial in the weight of ρ. However, the size (= total number of nodes), and hence also the weight, of π could be exponential in that of ρ. To overcome this trouble we embedded π into Prawitz's proof system of natural deductions containing single formulas, instead of sequents. As in π, the height and the total weight of different formulas of the resulting tree-like natural deduction ∂1 were polynomial, although the size of ∂1 still could be exponential, in the weight of ρ. In our next, crucial move, ∂1 was deterministically compressed into a "small", although multipremise, dag-like deduction ∂ whose horizontal levels contained only mutually different formulas, which made the whole weight polynomial in that of ρ. However, ∂ required a more complicated verification of the underlying provability of ρ. In this paper we present a nondeterministic compression of ∂ into a desired standard dag-like deduction ∂0 that deterministically proves ρ in time and space polynomial in the weight of ρ. Together with [3] this completes the proof of NP = PSPACE. Natural deductions are essential for our proof. Tree-to-dag horizontal compression of π merging equal sequents, instead of formulas, is (possible but) not sufficient, since the total number of different sequents in π might be exponential in the weight of ρ − even assuming that all formulas occurring in sequents are subformulas of ρ. On the other hand, we need Hudelmaier's cutfree sequent calculus in order to control both the height and total weight of different formulas of the initial tree-like proof π, since standard Prawitz's normalization although providing natural deductions with the subformula property does not preserve polynomial heights. It is not clear yet if we can omit references to π even in the proof of the weaker result NP = coNP.


Sign in / Sign up

Export Citation Format

Share Document