Optical vortices in fiber

Nanophotonics ◽  
2013 ◽  
Vol 2 (5-6) ◽  
pp. 455-474 ◽  
Author(s):  
Siddharth Ramachandran ◽  
Poul Kristensen

AbstractOptical vortex beams, possessing spatial polarization or phase singularities, have intriguing properties such as the ability to yield super-resolved spots under focussing, and the ability to carry orbital angular momentum that can impart torque to objects. In this review, we discuss the means by which optical fibers, hitherto considered unsuitable for stably supporting optical vortices, may be used to generate and propagate such exotic beams. We discuss the multitude of applications in which a new class of fibers that stably supports vortices may be used, and review recent experiments and demonstration conducted with such fibers.

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Liuhao Zhu ◽  
Miaomiao Tang ◽  
Hehe Li ◽  
Yuping Tai ◽  
Xinzhong Li

Abstract Generally, an optical vortex lattice (OVL) is generated via the superposition of two specific vortex beams. Thus far, OVL has been successfully employed to trap atoms via the dark cores. The topological charge (TC) on each optical vortex (OV) in the lattice is only ±1. Consequently, the orbital angular momentum (OAM) on the lattice is ignored. To expand the potential applications, it is necessary to rediscover and exploit OAM. Here we propose a novel high-order OVL (HO-OVL) that combines the phase multiplication and the arbitrary mode-controllable techniques. TC on each OV in the lattice is up to 51, which generates sufficient OAM to manipulate microparticles. Thereafter, the entire lattice can be modulated to desirable arbitrary modes. Finally, yeast cells are trapped and rotated by the proposed HO-OVL. To the best of our knowledge, this is the first realization of the complex motion of microparticles via OVL. Thus, this work successfully exploits OAM on OVL, thereby revealing potential applications in particle manipulation and optical tweezers.


2019 ◽  
Vol 10 (1) ◽  
pp. 28
Author(s):  
Zhirong Liu ◽  
Kelin Huang ◽  
Anlian Yang ◽  
Xun Wang ◽  
Philip H. Jones

In this paper, a recently-proposed pure-phase optical element, the fractal conical lens (FCL), is introduced for the regulation of strongly-focused circularly-polarized optical vortices in a high numerical aperture (NA) optical system. Strong focusing characteristics of circularly polarized optical vortices through a high NA system in cases with and without a FCL are investigated comparatively. Moreover, the conversion between spin angular momentum (SAM) and orbital angular momentum (OAM) of the focused optical vortex in the focal vicinity is also analyzed. Results revealed that a FCL of different stage S could significantly regulate the distributions of tight focusing intensity and angular momentum of the circularly polarized optical vortex. The interesting results obtained here may be advantageous when using a FCL to shape vortex beams or utilizing circularly polarized vortex beams to exploit new-type optical tweezers.


2006 ◽  
Vol 14 (15) ◽  
pp. 6604 ◽  
Author(s):  
Christian H. J. Schmitz ◽  
Kai Uhrig ◽  
Joachim P. Spatz ◽  
Jennifer E. Curtis

2019 ◽  
Vol 43 (3) ◽  
pp. 356-367
Author(s):  
V.V. Kotlyar ◽  
A.A. Kovalev ◽  
A.P. Porfirev

Here we study three different types of astigmatic Gaussian beams, whose complex amplitude in the Fresnel diffraction zone is described by the complex argument Hermite polynomial of the order (n, 0). The first type is a circularly symmetric Gaussian optical vortex with and a topological charge n after passing through a cylindrical lens. On propagation, the optical vortex "splits" into n first-order optical vortices. Its orbital angular momentum per photon is equal to n. The second type is an elliptical Gaussian optical vortex with a topological charge n after passing through a cylindrical lens. With a special choice of the ellipticity degree (1: 3), such a beam retains its structure upon propagation and the degenerate intensity null on the optical axis does not “split” into n optical vortices. Such a beam has fractional orbital angular momentum not equal to n. The third type is the astigmatic Hermite-Gaussian beam (HG) of order (n, 0), which is generated when a HG beam passes through a cylindrical lens. The cylindrical lens brings the orbital angular momentum into the original HG beam. The orbital angular momentum of such a beam is the sum of the vortex and astigmatic components, and can reach large values (tens and hundreds of thousands per photon). Under certain conditions, the zero intensity lines of the HG beam "merge" into an n-fold degenerate intensity null on the optical axis, and the orbital angular momentum of such a beam is equal to n. Using intensity distributions of the astigmatic HG beam in foci of two cylindrical lenses, we calculate the normalized orbital angular momentum which differs only by 7 % from its theoretical orbital angular momentum value (experimental orbital angular momentum is –13,62, theoretical OAM is –14.76).


OSA Continuum ◽  
2020 ◽  
Vol 3 (12) ◽  
pp. 3399
Author(s):  
David R. Gozzard ◽  
James T. Spollard ◽  
Paul G. Sibley ◽  
Lyle E. Roberts ◽  
Daniel A. Shaddock

2020 ◽  
Vol 12 (3) ◽  
pp. 1-9
Author(s):  
Chao Chu ◽  
Shecheng Gao ◽  
Zhibing Liu ◽  
Jiajing Tu ◽  
Jishun Yang ◽  
...  

2016 ◽  
Vol 36 (1) ◽  
pp. 79-84
Author(s):  
Carlos Fernando Diaz Meza ◽  
Yezid Torres Moreno ◽  
Cristian Hernando Acevedo Caceres

<p>This work develops a brief proposal to achieve the superposition of two opposite vortex beams, both with integer or non-integer mean value of the orbital angular momentum. The first part is about the generation of this kind of spatial light distributions through a modified Brown and Lohmann’s hologram. The inclusion of a simple mathematical expression into the pixelated grid’s transmittance function, based in Fourier domain properties, shifts the diffraction orders counterclockwise and clockwise to the same point and allows the addition of different modes. The strategy is theoretically and experimentally validated for the case of two opposite rotation helical wavefronts.</p>


2021 ◽  
Author(s):  
C. Alexeyev ◽  
Sergey Degtyarev ◽  
Boris Lapin ◽  
Maxim Yavorsky

Sign in / Sign up

Export Citation Format

Share Document