scholarly journals Optical vortex lattice: an exploitation of orbital angular momentum

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Liuhao Zhu ◽  
Miaomiao Tang ◽  
Hehe Li ◽  
Yuping Tai ◽  
Xinzhong Li

Abstract Generally, an optical vortex lattice (OVL) is generated via the superposition of two specific vortex beams. Thus far, OVL has been successfully employed to trap atoms via the dark cores. The topological charge (TC) on each optical vortex (OV) in the lattice is only ±1. Consequently, the orbital angular momentum (OAM) on the lattice is ignored. To expand the potential applications, it is necessary to rediscover and exploit OAM. Here we propose a novel high-order OVL (HO-OVL) that combines the phase multiplication and the arbitrary mode-controllable techniques. TC on each OV in the lattice is up to 51, which generates sufficient OAM to manipulate microparticles. Thereafter, the entire lattice can be modulated to desirable arbitrary modes. Finally, yeast cells are trapped and rotated by the proposed HO-OVL. To the best of our knowledge, this is the first realization of the complex motion of microparticles via OVL. Thus, this work successfully exploits OAM on OVL, thereby revealing potential applications in particle manipulation and optical tweezers.

2019 ◽  
Vol 10 (1) ◽  
pp. 28
Author(s):  
Zhirong Liu ◽  
Kelin Huang ◽  
Anlian Yang ◽  
Xun Wang ◽  
Philip H. Jones

In this paper, a recently-proposed pure-phase optical element, the fractal conical lens (FCL), is introduced for the regulation of strongly-focused circularly-polarized optical vortices in a high numerical aperture (NA) optical system. Strong focusing characteristics of circularly polarized optical vortices through a high NA system in cases with and without a FCL are investigated comparatively. Moreover, the conversion between spin angular momentum (SAM) and orbital angular momentum (OAM) of the focused optical vortex in the focal vicinity is also analyzed. Results revealed that a FCL of different stage S could significantly regulate the distributions of tight focusing intensity and angular momentum of the circularly polarized optical vortex. The interesting results obtained here may be advantageous when using a FCL to shape vortex beams or utilizing circularly polarized vortex beams to exploit new-type optical tweezers.


Nanophotonics ◽  
2013 ◽  
Vol 2 (5-6) ◽  
pp. 455-474 ◽  
Author(s):  
Siddharth Ramachandran ◽  
Poul Kristensen

AbstractOptical vortex beams, possessing spatial polarization or phase singularities, have intriguing properties such as the ability to yield super-resolved spots under focussing, and the ability to carry orbital angular momentum that can impart torque to objects. In this review, we discuss the means by which optical fibers, hitherto considered unsuitable for stably supporting optical vortices, may be used to generate and propagate such exotic beams. We discuss the multitude of applications in which a new class of fibers that stably supports vortices may be used, and review recent experiments and demonstration conducted with such fibers.


2006 ◽  
Vol 14 (15) ◽  
pp. 6604 ◽  
Author(s):  
Christian H. J. Schmitz ◽  
Kai Uhrig ◽  
Joachim P. Spatz ◽  
Jennifer E. Curtis

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jian Chen ◽  
Chenhao Wan ◽  
Andy Chong ◽  
Qiwen Zhan

Abstract We experimentally generate cylindrically polarized wavepackets with transverse orbital angular momentum, demonstrating the coexistence of spatiotemporal optical vortex with spatial polarization singularity. The results in this paper extend the study of spatiotemporal wavepackets to a broader scope, paving the way for its applications in various areas such as light–matter interaction, optical tweezers, spatiotemporal spin–orbit angular momentum coupling, etc.


OSA Continuum ◽  
2020 ◽  
Vol 3 (12) ◽  
pp. 3399
Author(s):  
David R. Gozzard ◽  
James T. Spollard ◽  
Paul G. Sibley ◽  
Lyle E. Roberts ◽  
Daniel A. Shaddock

2020 ◽  
Vol 12 (3) ◽  
pp. 1-9
Author(s):  
Chao Chu ◽  
Shecheng Gao ◽  
Zhibing Liu ◽  
Jiajing Tu ◽  
Jishun Yang ◽  
...  

2021 ◽  
Vol 7 (33) ◽  
pp. eabg5571
Author(s):  
Grisha Spektor ◽  
Eva Prinz ◽  
Michael Hartelt ◽  
Anna-Katharina Mahro ◽  
Martin Aeschlimann ◽  
...  

Orbital angular momentum of light is a core feature in photonics. Its confinement to surfaces using plasmonics has unlocked many phenomena and potential applications. Here, we introduce the reflection from structural boundaries as a new degree of freedom to generate and control plasmonic orbital angular momentum. We experimentally demonstrate plasmonic vortex cavities, generating a succession of vortex pulses with increasing topological charge as a function of time. We track the spatiotemporal dynamics of these angularly decelerating plasmon pulse train within the cavities for over 300 femtoseconds using time-resolved photoemission electron microscopy, showing that the angular momentum grows by multiples of the chiral order of the cavity. The introduction of this degree of freedom to tame orbital angular momentum delivered by plasmonic vortices could miniaturize pump probe–like quantum initialization schemes, increase the torque exerted by plasmonic tweezers, and potentially achieve vortex lattice cavities with dynamically evolving topology.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1485
Author(s):  
Wei Wang ◽  
Ruikang Zhao ◽  
Shilong Chang ◽  
Jing Li ◽  
Yan Shi ◽  
...  

In this paper, one spin-selected vortex metalens composed of silicon nanobricks is designed and numerically investigated at the mid-infrared band, which can produce vortex beams with different topological charges and achieve different spin lights simultaneously. Another type of spin-independent vortex metalens is also designed, which can focus the vortex beams with the same topological charge at the same position for different spin lights, respectively. Both of the two vortex metalenses can achieve high-efficiency focusing for different spin lights. In addition, the spin-to-orbital angular momentum conversion through the vortex metalens is also discussed in detail. Our work facilitates the establishment of high-efficiency spin-related integrated devices, which is significant for the development of vortex optics and spin optics.


Sign in / Sign up

Export Citation Format

Share Document