scholarly journals An accurate reactive power control study in virtual flux droop control

Open Physics ◽  
2017 ◽  
Vol 15 (1) ◽  
pp. 948-953
Author(s):  
Aimeng Wang ◽  
Jia Zhang

AbstractThis paper investigates the problem of reactive power sharing based on virtual flux droop method. Firstly, flux droop control method is derived, where complicated multiple feedback loops and parameter regulation are avoided. Then, the reasons for inaccurate reactive power sharing are theoretically analyzed. Further, a novel reactive power control scheme is proposed which consists of three parts: compensation control, voltage recovery control and flux droop control. Finally, the proposed reactive power control strategy is verified in a simplified microgrid model with two parallel DGs. The simulation results show that the proposed control scheme can achieve accurate reactive power sharing and zero deviation of voltage. Meanwhile, it has some advantages of simple control and excellent dynamic and static performance.

Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2849
Author(s):  
Seok-Il Go ◽  
Sang-Yun Yun ◽  
Seon-Ju Ahn ◽  
Hyun-Woo Kim ◽  
Joon-Ho Choi

The voltage and reactive power control (Volt/VAR Control, VVC) in distribution networks has become a challenging issue with the increasing utilization of distributed generations (DGs). In this paper, a heuristic-based coordinated voltage control scheme that considers distribution voltage control devices, i.e., on-load tap changers (OLTC) and step voltage regulators (SVR), as well as reactive power control devices, i.e., DGs, are proposed. Conventional voltage control methods using non-linear node voltage equations require complex computation. In this paper, the formulation of simplified node voltage equations accounting for changes in tap position of distribution voltage control devices and reactive power changes of reactive power control devices are presented. A heuristic coordinated voltage control scheme using the proposed simplified node voltage equations is proposed. A coordinated voltage control scheme to achieve voltage control for nominal voltage and conservative voltage reduction (CVR) is presented. The results of the proposed schemes are compared with the results from the quadratic optimization method to confirm that the proposed schemes yields suitably similar results. Furthermore, a tap scheduling method is proposed to reduce the number of tap changes while controlling network voltage. The tap position is readjusted using a voltage control performance index (PI). Simulation results confirm that when using this method the number of tap changes is reduced. The proposed scheme not only produces reasonable performance in terms of control voltage of networks but also reduces the number of tap changes made by OLTC. The proposed control method is an alternative candidate for a system to be applied to practical distribution networks due to its simplified calculations and robust performance.


2019 ◽  
Vol 10 (4) ◽  
pp. 1684-1695 ◽  
Author(s):  
Dawit Fekadu Teshome ◽  
Wilsun Xu ◽  
Pooya Bagheri ◽  
Alexandre Nassif ◽  
Yaxiang Zhou

Author(s):  
Georgios C. Kryonidis ◽  
Kyriaki-Nefeli D Malamaki ◽  
Spyros I. Gkavanoudis ◽  
Konstantinos Oureilidis ◽  
Eleftherios O Kontis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document