NMHC and VOC Speciation of the Exhaust Gas From a Gas Turbine Engine Using Alternative, Renewable and Conventional Jet A-1 Aviation Fuels

Author(s):  
Mohamed A. Altaher ◽  
Hu Li ◽  
Simon Blakey ◽  
Winson Chung

This paper investigated the emissions of individual unburned hydrocarbons and carbonyl compounds from the exhaust gas of an APU (Auxiliary Power Unit) gas turbine engine burning various fuels. The engine was a single spool, two stages of turbines and one stage of centrifugal compressor gas turbine engine, and operated at idle and full power respectively. Four alternative aviation fuel blends with Jet A-1 were tested including GTL, hydrogenated renewable jet fuel and fatty acid ester. C2-C4 alkenes, benzene, toluene, xylene, trimethylbenzene, naphthalene, formaldehyde, acetaldehyde and acrolein emissions were measured. The results show at the full power condition, the concentrations for all hydrocarbons were very low (near or below the instrument detection limits). Formaldehyde was a major aldehyde species emitted with a fraction of around 60% of total measured aldehydes emissions. Formaldehydes emissions were reduced for all fuels compared to Jet A-1 especially at the idle conditions. There were no differences in acetaldehydes and acrolein emissions for all fuels; however, there was a noticeable reduction with GTL fuel. The aromatic hydrocarbon emissions including benzene and toluene are decreased for the alternative and renewable fuels.

2020 ◽  
Vol 37 (1) ◽  
pp. 85-94 ◽  
Author(s):  
P. Booma Devi ◽  
D. Raja Joseph ◽  
R. Gokulnath ◽  
S. Manigandan ◽  
P. Gunasekar ◽  
...  

AbstractThis paper aims in assessing the effect of biofuel blend such as butanol, jatropha methyl ester, soya methyl ester and rapeseed methyl ester as an additive for the aviation fuel. In addition to the blends, the nanoparticle TiO2 of 3 % is added to the biofuel. The nanoparticle mixed at the concentration of 300ppm by ultrasonication process. The fuel Jet A, B27T, J27T, S27T and R27T are investigated for combustion and emission characteristics for various throttle settings in micro gas turbine engine. Addition of additives improves the ultimate property of the fuel by reducing the kinematic viscosity. The fuel blend B27T reports 25 % increase in total static thrust and 22 % reduction in thrust specific fuel consumption. From the results it is evident that, all fuel blends showed a significant reduction in emission values owing to high oxygen content. In addition, the thermal efficiency of the B27T and J27T is improved appreciably to 30 % and 10 % higher than Jet A fuel owing to the influence of the nanoparticle TiO2. On the other hand, the emissions like CO and NOx reduced drastically up to 70 % and 45 % respectively.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Benny George ◽  
Nagalingam Muthuveerappan

AbstractTemperature probes of different designs were widely used in aero gas turbine engines for measurement of air and gas temperatures at various locations starting from inlet of fan to exhaust gas from the nozzle. Exhaust Gas Temperature (EGT) downstream of low pressure turbine is one of the key parameters in performance evaluation and digital engine control. The paper presents a holistic approach towards life assessment of a high temperature probe housing thermocouple sensors designed to measure EGT in an aero gas turbine engine. Stress and vibration analysis were carried out from mechanical integrity point of view and the same was evaluated in rig and on the engine. Application of 500 g load concept to clear the probe design was evolved. The design showed strength margin of more than 20% in terms of stress and vibratory loads. Coffin Manson criteria, Larsen Miller Parameter (LMP) were used to assess the Low Cycle Fatigue (LCF) and creep life while Goodman criteria was used to assess High Cycle Fatigue (HCF) margin. LCF and HCF are fatigue related damage from high frequency vibrations of engine components and from ground-air-ground engine cycles (zero-max-zero) respectively and both are of critical importance for ensuring structural integrity of engine components. The life estimation showed LCF life of more than 4000 mission reference cycles, infinite HCF life and well above 2000 h of creep life. This work had become an integral part of the health monitoring, performance evaluation as well as control system of the aero gas turbine engine.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Benny George ◽  
Nagalingam Muthuveerappan

Abstract Temperature probes of different designs were widely used in aero gas turbine engines for measurement of air and gas temperatures at various locations starting from inlet of fan to exhaust gas from the nozzle. Exhaust Gas Temperature (EGT) downstream of low pressure turbine is one of the key parameters in performance evaluation and digital engine control. The paper presents a holistic approach towards life assessment of a high temperature probe housing thermocouple sensors designed to measure EGT in an aero gas turbine engine. Stress and vibration analysis were carried out from mechanical integrity point of view and the same was evaluated in rig and on the engine. Application of 500 g load concept to clear the probe design was evolved. The design showed strength margin of more than 20% in terms of stress and vibratory loads. Coffin Manson criteria, Larsen Miller Parameter (LMP) were used to assess the Low Cycle Fatigue (LCF) and creep life while Goodman criteria was used to assess High Cycle Fatigue (HCF) margin. LCF and HCF are fatigue related damage from high frequency vibrations of engine components and from ground-air-ground engine cycles (zero-max-zero) respectively and both are of critical importance for ensuring structural integrity of engine components. The life estimation showed LCF life of more than 4000 mission reference cycles, infinite HCF life and well above 2000 h of creep life. This work had become an integral part of the health monitoring, performance evaluation as well as control system of the aero gas turbine engine.


2020 ◽  
pp. 5-13
Author(s):  
Grigory Popov ◽  
◽  
Vasily Zubanov ◽  
Valeriy Matveev ◽  
Oleg Baturin ◽  
...  

The presented work provides a detailed description of the method developed by the authors for coordinating the working process of the main elements of the starting system for a modern gas turbine engine for a civil aviation aircraft: an auxiliary power unit (APU) and an air turbine – starter. This technique was developed in the course of solving the practical problem of selecting the existing APU and air turbine for a newly created engine. The need to develop this method is due to the lack of recommendations on the coordination of the elements of the starting system in the available literature. The method is based on combining the characteristics of the APU and the turbine, reduced to a single coordinate system. The intersection of the characteristic’s lines corresponding to the same conditions indicates the possibility of joint operation of the specified elements. The lack of intersection indicates the impossibility of joint functioning. The calculation also takes into account losses in the air supply lines to the turbine. The use of the developed method makes it possible to assess the possibility of joint operation of the APU and the air turbine in any operating mode. In addition to checking the possibility of functioning, as a result of the calculation, specific parameters of the working process at the operating point are determined, which are then used as initial data in calculating the elements of the starting system, for example, determining the parameters of the turbine, which in turn allow providing initial information for calculating the starting time or the possibility of functioning of the starting system GTE according to strength and other criteria. The algorithm for calculating the start-up time of the gas turbine engine was also developed by the authors and implemented in the form of an original computer program. Keywords: gas turbine engine start-up, GTE starting system, air turbine, methodology, joint work, auxiliary power unit, power, start-up time, characteristics matching, coordination, operational characteristics, computer program.


Author(s):  
V. Pachidis ◽  
P. Pilidis ◽  
I. Li

The performance analysis of modern gas turbine engine systems has led industry to the development of sophisticated gas turbine performance simulation tools and the utilization of skilled operators who must possess the ability to balance environmental, performance and economic requirements. Academic institutions, in their training of potential gas turbine performance engineers have to be able to meet these new challenges, at least at a postgraduate level. This paper describes in detail the “Gas Turbine Performance Simulation” module of the “Thermal Power” MSc course at Cranfield University in the UK, and particularly its practical content. This covers a laboratory test of a small Auxiliary Power Unit (APU) gas turbine engine, the simulation of the ‘clean’ engine performance using a sophisticated gas turbine performance simulation tool, as well as the simulation of the degraded performance of the engine. Through this exercise students are expected to gain a basic understanding of compressor and turbine operation, gain experience in gas turbine engine testing and test data collection and assessment, develop a clear, analytical approach to gas turbine performance simulation issues, improve their technical communication skills and finally gain experience in writing a proper technical report.


Author(s):  
P. R. Spina ◽  
G. Torella ◽  
M. Venturini

In the paper, Expert Systems (ESs) developed to support gas turbine engine maintenance and diagnostics are presented. The ESs are applied to turbofans and Auxiliary Power Units and are developed both in procedural (Visual Basic) and declarative (Turbo Prolog) languages. The paper reports some examples of ES utilization, so highlighting high interactivity and user-friendly interface. Moreover, for each ES, the main working features as well as strong and weak points are put into evidence.


Author(s):  
Hooshang Heshmat ◽  
Michael J. Tomaszewski ◽  
James F. Walton

A 134 Newton thrust class, 120,000 rpm turbojet was redesigned to incorporate a high-temperature compliant foil bearing aft of the turbine rotor and a compliantly mounted ball bearing forward of the centrifugal compressor–cold section. Two rotor-bearing system configurations were evaluated, one for operation above the bending critical speed and one for rigid rotor operation. Required characteristics for the foil bearing and ball bearing equipped with compliant foil damper mount were determined through a series of design tradeoff studies evaluating critical speeds and system stability. Following the design studies, the necessary hardware was fabricated, the engine assembled and operation to full speed achieved. Engine speed, rotor vibrations, compressor discharge pressure, exhaust gas temperature, thrust and fuel consumption were all recorded for both a baseline fluid lubricated ball bearing supported engine and the new turbojet engine using the hybrid foil bearing support system. Issues related to high-speed operation above the bending critical speed are identified and recommendations offered. Engine test data show that approximately 10% less fuel is consumed by the hybrid foil bearing mount system than the baseline conventional design. It is also shown that the foil bearing life was longer than the ball bearing life even though the foil bearing operated in the exhaust gas stream at temperatures exceeding 800°C. The results of this program demonstrate the feasibility of developing a completely oil-free foil bearing gas turbine engine.


Author(s):  
H. S. Yang ◽  
M. S. Rho ◽  
H. Y. Park ◽  
J. H. Choi ◽  
Y. B. Cha ◽  
...  

This paper shows that high-speed starter/generator system is more efficient for gas turbine engine for mobile auxiliary power unit. The system is rated at 25kW, 325Vdc, 60krpm. The system also provides 4kw to start the 100kW engine. The system consists of a high speed machine directly coupled to the gas turbine engine, a power control unit (PCU), and an electronics controller. The PCU is consist of boost converter that boost from 24V (Battery of Vehicle) to 235V for driving high-speed motor, inverter drive PMSM (Permanent Magnet Synchronous Motor), and buck converter drop the voltage to 28V. For PMSM driving the system applied SVPWM (Space Vector Pulse Width Modulation), sensorless algorithm. And then, to supply optimized power, “Constant Power Control Algorithm” is applied. For the system development, electromagnetic analysis, structure analysis, rotor dynamic analysis, and heat transfer analysis are done. After manufacturing, we have tested the system many times to produce verified performance.


Sign in / Sign up

Export Citation Format

Share Document