Low-cycle fatigue and creep analysis of gas turbine engine components

1975 ◽  
Vol 12 (4) ◽  
pp. 376-382 ◽  
Author(s):  
S. Majumdar
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Benny George ◽  
Nagalingam Muthuveerappan

AbstractTemperature probes of different designs were widely used in aero gas turbine engines for measurement of air and gas temperatures at various locations starting from inlet of fan to exhaust gas from the nozzle. Exhaust Gas Temperature (EGT) downstream of low pressure turbine is one of the key parameters in performance evaluation and digital engine control. The paper presents a holistic approach towards life assessment of a high temperature probe housing thermocouple sensors designed to measure EGT in an aero gas turbine engine. Stress and vibration analysis were carried out from mechanical integrity point of view and the same was evaluated in rig and on the engine. Application of 500 g load concept to clear the probe design was evolved. The design showed strength margin of more than 20% in terms of stress and vibratory loads. Coffin Manson criteria, Larsen Miller Parameter (LMP) were used to assess the Low Cycle Fatigue (LCF) and creep life while Goodman criteria was used to assess High Cycle Fatigue (HCF) margin. LCF and HCF are fatigue related damage from high frequency vibrations of engine components and from ground-air-ground engine cycles (zero-max-zero) respectively and both are of critical importance for ensuring structural integrity of engine components. The life estimation showed LCF life of more than 4000 mission reference cycles, infinite HCF life and well above 2000 h of creep life. This work had become an integral part of the health monitoring, performance evaluation as well as control system of the aero gas turbine engine.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Benny George ◽  
Nagalingam Muthuveerappan

Abstract Temperature probes of different designs were widely used in aero gas turbine engines for measurement of air and gas temperatures at various locations starting from inlet of fan to exhaust gas from the nozzle. Exhaust Gas Temperature (EGT) downstream of low pressure turbine is one of the key parameters in performance evaluation and digital engine control. The paper presents a holistic approach towards life assessment of a high temperature probe housing thermocouple sensors designed to measure EGT in an aero gas turbine engine. Stress and vibration analysis were carried out from mechanical integrity point of view and the same was evaluated in rig and on the engine. Application of 500 g load concept to clear the probe design was evolved. The design showed strength margin of more than 20% in terms of stress and vibratory loads. Coffin Manson criteria, Larsen Miller Parameter (LMP) were used to assess the Low Cycle Fatigue (LCF) and creep life while Goodman criteria was used to assess High Cycle Fatigue (HCF) margin. LCF and HCF are fatigue related damage from high frequency vibrations of engine components and from ground-air-ground engine cycles (zero-max-zero) respectively and both are of critical importance for ensuring structural integrity of engine components. The life estimation showed LCF life of more than 4000 mission reference cycles, infinite HCF life and well above 2000 h of creep life. This work had become an integral part of the health monitoring, performance evaluation as well as control system of the aero gas turbine engine.


Author(s):  
Partha S. Das

Accessory Gearbox (AGB) Housing is one of the most critical components of a gas turbine engine that lies between the core engine & the aircraft. The function of the AGB Housing is to provide support for the gear drive assembly that transfers power from the engine to the engine accessories and to the power takeoff drive for the aircraft accessories. The housing also functions as an oil tight container and passageway for lubrication. In addition, the AGB housing provides mount points to attach engine/aircraft support accessories, including the engine mount points to the aircraft. The complexity in predicting AGB housing behavior under the gear loading, engine loading and engine induced vibration is one of the main challenges of designing a new gearbox with minimum weight. To address these issues, the current paper presents for the first time the design-analysis of a new lightweight AGB housing for a turboshaft engine, based on the following three major requirements: i) gear bearing pads strength & stiffness capability, ii) AGB mount pads (for accessories and for engine) load carrying capability, and, iii) vibratory response (mainly high cycle fatigue (HCF) response) of the AGB housing. A 3-D Finite Element Analysis (FEA) model of the AGB housing was developed using the proposed initial design. Various design modifications, involving several interrelated, iterative steps, were then carried out by adjusting and modifying the housing wall thickness, placement & sizes of internal ribs and external gussets, including additional geometric modifications to satisfy the design objectives. The result is a robust, lightweight AGB housing design, eliminating the need for some of the required testing for the qualification of the new gearbox, indicating a significant cost savings. This paper also discusses in detail the methodology for the gear bearing pad strength/stiffness calculation, the FEA modeling techniques for the application of mount loads and gear bearing loads under operating & flight maneuver conditions, and, a methodology for addressing a combined HCF & LCF (Low Cycle Fatigue) response of the housing.


1980 ◽  
Vol 52 (6) ◽  
pp. 21-22

The modern aircraft gas turbine engine produces power on demand hour upon hour and day in, day out. It is one of the most extensively used types of high‐speed rotating machinery as well as one of the most efficient converters of fuel into thrust. Reliability and long life with minimum maintenance depend on efficient monitoring of engine performance and component status.


2017 ◽  
Vol 60 (3) ◽  
pp. 421-427
Author(s):  
A. V. Pakhomenkov ◽  
R. A. Azimov ◽  
S. A. Bukatyi

1980 ◽  
Vol 102 (1) ◽  
pp. 45-49
Author(s):  
T. G. Meyer ◽  
T. A. Cruse

A low cycle fatigue (LCF) life exhaustion method is developed for gas turbine engine disks subjected to complex mission history loading. The method is incorporated into an algorithm for LCF life exhaustion prediction as a function of component, material, mission history, and mission ordering. Principal features in the LCF life model include a simple strain range-mean stress correlation model, a predictive model for the effects of strain-hardened surface layers due to machining and the effects of dwell (creep) due to elevated temperature exposure time, a fracture mechanics-based nonlinear, cumulative damage model, and full-scale component verification.


Sign in / Sign up

Export Citation Format

Share Document