On tungstates of divalent cations (III) – Pb5O2[WO6]

2020 ◽  
Vol 235 (8-9) ◽  
pp. 311-317
Author(s):  
Stephan G. Jantz ◽  
Florian Pielnhofer ◽  
Henning A. Höppe

Abstract${\text{Pb}}_{5}{\text{O}}_{2}\left[{\text{WO}}_{6}\right]$ was discovered as a frequently observed side phase during our investigation on lead tungstates. Its crystal structure was solved by single-crystal X-ray diffraction ($P{2}_{1}/n$, $a=7.4379\left(2\right)$ Å, $b=12.1115\left(4\right)$ Å, $c=10.6171\left(3\right)$ Å, $\beta =90.6847\left(8\right)$°, $Z=4$, ${R}_{\text{int}}=0.038$, ${R}_{1}=0.020$, $\omega {R}_{2}=0.029$, 4188 data, 128 param.) and is isotypic with ${\text{Pb}}_{5}{\text{O}}_{2}\left[{\text{Te}}_{6}\right]$. ${\text{Pb}}_{5}{\text{O}}_{2}\left[{\text{WO}}_{6}\right]$ comprises a layered structure built up by non-condensed [WO6]${}^{6-}$ octahedra and ${\left[{\text{O}}_{4}{\text{Pb}}_{10}\right]}^{12+}$ oligomers. The compound was characterised by spectroscopic measurements (Infrared (IR), Raman and Ultraviolet–visible (UV/Vis) spectra) as well as quantum chemical and electrostatic calculations (density functional theory (DFT), MAPLE) yielding a band gap of 2.9 eV fitting well with the optical one of 2.8 eV. An estimation of the refractive index based on the Gladstone-Dale relationship yielded $n\approx 2.31$. Furthermore first results of the thermal analysis are presented.

2015 ◽  
Vol 70 (9) ◽  
pp. 631-636 ◽  
Author(s):  
Huaixian Liu ◽  
Lin Sun ◽  
Huiliang Zhou ◽  
Peipei Cen ◽  
Xiaoyong Jin ◽  
...  

AbstractStarting with 1H-3-phenyl-5-(pyridin-2-yl)-1,2,4-triazole (1-Hppt), a Co(III) complex, [Co(ppt)3] (1), has been synthesized by reaction with CoF3 under hydrothermal conditions and characterized by its infrared spectrum and elemental analysis. The structure was determined by single-crystal and powder X-ray diffraction. Density functional theory (DFT) was employed to determine the optimized geometry and preferred conformation of the free ligand. A supramolecular network is formed via π–π stacking interactions. The conformation and geometry of the ligands correspond with the calculated results.


2006 ◽  
Vol 62 (6) ◽  
pp. 972-978 ◽  
Author(s):  
M. H. Sørby ◽  
A. E. Gunnæs ◽  
O. M. Løvvik ◽  
H. W. Brinks ◽  
H. Fjellvåg ◽  
...  

The crystal structure of Zr2NiD4.5 has been determined by a combination of synchrotron radiation powder X-ray diffraction, electron diffraction and powder neutron diffraction data. Deuterium ordering results in a triclinic supercell given by a super = 6.81560 (7), b super = 8.85137 (9), c super = 8.88007 (10) Å, αsuper = 79.8337 (8), βsuper = 90.0987 (9), γsuper = 90.3634 (9)°, which relates to the non-super unit cell as a super = −a, b super = −b − c, c super = −b + c. The centrosymmetric and fully ordered deuterium sublattice was determined by simulated annealing and Rietveld refinement. Deuterium was found to occupy three types of tetrahedral sites: two that are coordinated by four Zr atoms and one that is coordinated by three Zr atoms and one Ni atom. All D—D distances are longer than 2 Å. The feasibility of the crystal structure was supported by density functional theory calculations.


2021 ◽  
pp. 1-3
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of pazopanib hydrochloride Form 1 has been refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Pazopanib hydrochloride crystallizes in space group P-1 (#2) with a = 8.45008(6), b = 8.71310(12), c = 16.05489(35) Å, α = 79.5996(9), β = 86.4784(5), γ = 87.3764(3)°, V = 1159.724(9) Å3, and Z = 2. The crystal structure is essentially identical to that of CSD Refcode CEVYEK. There are four strong N–H⋯Cl hydrogen bonds to the chloride anion. Several additional weaker N–H⋯Cl and C–H⋯Cl hydrogen bonds are also present. A variety of C–H⋯O, C–H⋯N, and N–H⋯S hydrogen bonds also contribute to the lattice energy. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1442-C1442
Author(s):  
Karthikeyan Natarajan ◽  
Sathya Duraisamy ◽  
Sivakumar Kandasamy

X -ray diffraction becomes a routine process these decades for determining crystal structure of the materials. Most of the crystal structures solved nowadays is based on single crystal X-ray diffraction because it solves the crystal and molecular structures from small molecules to macro molecules without much human intervention. However it is difficult to grow single crystals of sufficient size and quality for conventional single-crystal X-ray diffraction studies. In such cases it becomes essential that structural information can be determined from powder diffraction data. With the recent developments in the direct-space approaches for structure solution, ab initio crystal structure analysis of molecular solids can be accomplished from X-ray powder diffraction data. It should be recalled that crystal structure determination from laboratory X-ray powder diffraction data is a far more difficult task than that of its single-crystal counterpart, particularly when the molecule possesses considerable flexibility or there are multiple molecules in the asymmetric unit. Salicylic acid and its derivatives used as an anti-inflammatory drug are known for its numerous medicinal applications. In our study, we synthesized mononuclear copper (II) complex of salicylate derivative. The structural characterization of the prepared compound was carried out using powder X-ray diffraction studies. Crystal structure of the compound has been solved by direct-space approach and refined by a combination of Rietveld method using TOPAS Academic V4.1. Density Functional Theory (DFT) calculations have to be carried in the solid state for the compound using GaussianW9.0 in the frame work of a generalized-gradient approximation (GGA). The geometry optimization was to be performed using B3LYP density functional theory. The atomic coordinates were taken from the final X-ray refinement cycle.


2014 ◽  
Vol 1052 ◽  
pp. 207-211
Author(s):  
Rui Ting Xue ◽  
Wei Song Sun ◽  
Si Rong Yu

The crystal structure of 1, 3-propanediol bis (4-aminobenzoate) has been determined by single crystal X-ray diffraction. The UV-vis spectra have been characterized experimentally. The nonlinear optical properties were investigated with the density functional theory method. The calculated first hyperpolarizability values are 7.69×10-30, 14.22×10-30 and 26.66×10-30 esu for the monomer, dimmer and trimer structure of the compound. The results show that the compound has high hyperpolarizability and the hyperpolarizability multipled along with the increasing number of the molecules.


2005 ◽  
Vol 58 (3) ◽  
pp. 224 ◽  
Author(s):  
Susan G. Oates ◽  
Michael A. Hitchman ◽  
Brian W. Skelton ◽  
Robert Stranger ◽  
Horst Stratemeier ◽  
...  

The crystal structure of Cs2[Zn(NO2)4] has been determined by X-ray diffraction. Each nitrite ion in the Zn(NO2)42− group forms one short [2.080(3) Å] and one long [2.516(3) Å] Zn–O bond, the metal–ligand interaction being intermediate between symmetrical chelation and syn-unidentate nitrito coordination. It seems likely that this unsymmetrical geometry is adopted in order to minimize ligand–ligand repulsions, though density functional theory calculations suggest a very shallow potential energy curve for the complex.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 897
Author(s):  
Ryusei Hoshikawa ◽  
Kosuke Yoshida ◽  
Ryoji Mitsuhashi ◽  
Masahiro Mikuriya ◽  
Takashi Okuno ◽  
...  

Oxido bridges commonly form between iron(III) ions, but their bond angles and symmetry vary with the circumstances. A large number of oxido-bridged dinuclear iron(III) complexes have been structurally characterized. Some of them belong to the C2 point group, possessing bent Fe–O–Fe bonds, while some others belong to the Ci symmetry, possessing the linear Fe–O–Fe bonds. The question in this study is what determines the structures and symmetry of oxido-bridged dinuclear iron(III) complexes. In order to gain further insights, three oxido-bridged dinuclear iron(III) complexes were newly prepared with 2,2′-bipyridine (bpy) and 1,10-phenanthroline (phen) ligands: [Fe2OCl2(bpy)4][PF6]2 (1), [Fe2O(NO3)2(bpy)4][PF6]2·0.6MeCN·0.2(2-PrOH) (2), and [Fe2OCl2(phen)4][PF6]2·MeCN·0.5H2O (3). The crystal structures of 1, 2, and 3 were determined by the single-crystal X-ray diffraction method, and all of them were found to have the bent Fe–O–Fe bonds. Judging from the crystal structure, some intramolecular interligand hydrogen bonds were found to play an important role in fixing the structures. Additional density functional theory (DFT) calculations were conducted, also for a related oxido-bridged dinuclear iron(III) complex with a linear Fe–O–Fe bond. We conclude that the Fe–O–Fe bridge tends to bend like a water molecule, but is often stretched by interligand steric repulsion, and that the structures are mainly controlled by the intramolecular interligand interactions.


Author(s):  
Giuseppe M. Lombardo ◽  
Antonio Rescifina ◽  
Ugo Chiacchio ◽  
Alessia Bacchi ◽  
Francesco Punzo

The crystal structure of racemic dimethyl (4RS,5RS)-3-(4-nitrophenyl)-4,5-dihydroisoxazole-4,5-dicarboxylate, C13H12N2O7, has been determined by single-crystal X-ray diffraction. By analysing the degree of growth of the morphologically important crystal faces, a ranking of the most relevant non-covalent interactions determining the crystal structure can be inferred. The morphological information is considered with an approach opposite to the conventional one: instead of searching inside the structure for the potential key interactions and using them to calculate the crystal habit, the observed crystal morphology is used to define the preferential lines of growth of the crystal, and then this information is interpreted by means of density functional theory (DFT) calculations. Comparison with the X-ray structure confirms the validity of the strategy, thus suggesting this top–down approach to be a useful tool for crystal engineering.


Author(s):  
Rémi Federicci ◽  
Benoit Baptiste ◽  
Fabio Finocchi ◽  
Florin Popa ◽  
Luc Brohan ◽  
...  

Recent results have demonstrated an exceptionally high permittivity in the range 200–330 K in crystalline titanium oxide Rb2Ti2O5. In this article, the possibility of a structural transition giving rise to ferroelectricity is carefully inspected. In particular, X-ray diffraction, high-resolution transmission electron microscopy and Raman spectroscopy are performed. The crystal structure is shown to remain invariant and centrosymmetric at all temperatures between 90 K and 450 K. The stability of the C2/m structure is confirmed by density functional theory calculations. These important findings allow the existence of a conventional ferroelectric phase transition to be ruled out as a possible mechanism for the colossal permittivity and polarization observed in this material.


Crystals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 599
Author(s):  
Jung-Seop Lee ◽  
Matthias Zeller ◽  
Shrikant Dashrath Warkad ◽  
Satish Balasaheb Nimse

N-(3-nitrophenyl)cinnamamide 1 with formula C15H12N2O3 was synthesized, and its crystal structure was determined by single-crystal X-ray diffraction analysis. Compound 1 crystallizes in the monoclinic space group P21/n with unit cell dimensions: a = 6.7810 (5) Å, b = 23.0913 (15) Å, c = 8.2079 (5) Å, V = 1282.76 (15) Å3, Z = 4, determined at 150 K with MoKα radiation. The experimental structure refined against atomic scattering factors is compared with the structure obtained using a Hirshfeld Atom Refinement (HAR) approach and Density Functional Theory (DFT) geometry optimizations.


Sign in / Sign up

Export Citation Format

Share Document