Precise Values for Critical Fields in Quantum Electrodynamics

1974 ◽  
Vol 29 (9) ◽  
pp. 1267-1275 ◽  
Author(s):  
Gerhard Soff ◽  
Berndt Müller ◽  
Johann Rafelski

A careful investigation of different corrections to binding energies of electrons in almost critical fields is performed. We investigate quantitatively the influence of the nuclear charge parameters, nuclear mass, degree of ionization on the value of the critical charge of the nucleus. Rather qualitative arguments are given to establish the contribution of the quantumelectrodynamic corrections, which are found to be small. Some phenomenological modifications of QED are quantitatively investigated and found to be of negligible influence on the value of the critical field. For heavy ion collisions with Z1+Z2>Zcr the critical separations between ions are given as results of precise solutions of the relativistic two coulomb center problem. Corrections due to electron-electron interaction are considered. We find (with present theoretical accuracy) Zcr=173±2, in the heavy ion collisions Rcr(U-U) = 34.7±2 fm and Rcr (U-Cf)=47.7±2 fm. We shortly consider the possibility of spontaneous muon production in muonic supercritical fields.

1984 ◽  
Vol 17 (4) ◽  
pp. 615-640 ◽  
Author(s):  
T H J de Reus ◽  
J Reinhardt ◽  
B Muller ◽  
W Greiner ◽  
G Soff ◽  
...  

2021 ◽  
Vol 57 (2) ◽  
Author(s):  
K. Gallmeister ◽  
C. Greiner

AbstractThe physical processes behind the production of light nuclei in heavy ion collisions are unclear. The successful theoretical description of experimental yields by thermal models conflicts with the very small binding energies of the observed states, being fragile in such a hot and dense environment. Other available ideas are delayed production via coalescence, or a cooling of the system after the chemical freeze-out according to a Saha equation, or a ‘quench’ instead of a thermal freeze-out. A recently derived prescription of an (interacting) Hagedorn gas is applied to consolidate the above pictures. The tabulation of decay rates of Hagedorn states into light nuclei allows to calculate yields usually inaccessible due to very poor Monte Carlo statistics. Decay yields of stable hadrons and light nuclei are calculated. While the scale-free decays of Hagedorn states alone are not compatible with the experimental data, a thermalized hadron and Hagedorn state gas is able to describe the experimental data. Applying a cooling of the system according to a Saha-equation with conservation of nucleon and anti-nucleon numbers leads to (nearly) temperature independent yields, thus a production of the light nuclei at temperatures much lower than the chemical freeze-out temperature is compatible with experimental data and with the statistical hadronization model.


2020 ◽  
Vol 56 (11) ◽  
Author(s):  
Benjamin Dönigus

AbstractThe production of light (anti-)nuclei and (anti-)hypernuclei in ultra-relativistic heavy-ion collisions, but also in more elementary collisions as proton–proton and proton–nucleus collisions, became recently a focus of interest. In particular, the fact that these objects are all loosely bound compared to the temperature and energies, e.g. the kinetic energies involved, is often stressed out to be special for their production. The binding energies of these (anti-)nuclei is between 130 keV ($${\mathrm {\Lambda }}$$ Λ separation energy in the hypertriton) and about 8 MeV per nucleon. Whereas the connected temperatures are of the order of 100 to 160 MeV. This lead to some difficulties in the interpretation of the usually discussed production models, i.e. coalescence and statistical-thermal models, as will be discussed here. In this brief review we discuss selected highlights of the production of light (anti-)nuclei, such as (anti-)deuteron, (anti-)helium and (anti-)alpha nuclei. In addition, we will discuss the current status of the highly debated lifetime of the (anti-)hypertriton and connected measurements and model results.


1984 ◽  
Vol 45 (C6) ◽  
pp. C6-269-C6-279
Author(s):  
A. Bonaccorso ◽  
M. Di Toro ◽  
U. Lombardo ◽  
G. Russo

2003 ◽  
Vol 554 (1-2) ◽  
pp. 21-27 ◽  
Author(s):  
Alex Krasnitz ◽  
Yasushi Nara ◽  
Raju Venugopalan

1983 ◽  
Vol 27 (2) ◽  
pp. 606-627 ◽  
Author(s):  
Hafez M. A. Radi ◽  
John O. Rasmussen ◽  
Kenneth A. Frankel ◽  
John P. Sullivan ◽  
H. C. Song

Sign in / Sign up

Export Citation Format

Share Document