chemical freeze
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 9)

H-INDEX

22
(FIVE YEARS 0)

2021 ◽  
Vol 822 ◽  
pp. 136703
Author(s):  
Anton Motornenko ◽  
Jan Steinheimer ◽  
Volodymyr Vovchenko ◽  
Reinhard Stock ◽  
Horst Stoecker
Keyword(s):  


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Deeptak Biswas

We have estimated centrality variation of chemical freeze-out parameters from yield data at midrapidity of π ± , K ± and p , p ¯ for collision energies of RHIC (Relativistic Heavy Ion Collider), Beam Energy Scan (RHIC-BES) program, and LHC (Large Hadron Collider). We have considered a simple hadron resonance gas model and employed a formalism involving conserved charges ( B , Q , S ) of QCD for parameterization. Along with temperature and three chemical potentials ( T , μ B , μ Q , μ S ), a strangeness undersaturation factor ( γ S ) has been used to incorporate the partial equilibration in the strange sector. Our obtained freeze-out temperature does not vary much with centrality, whereas chemical potentials and γ S seem to have a significant dependence. The strange hadrons are found to deviate from a complete chemical equilibrium at freeze-out at the peripheral collisions. This deviation appears to be more prominent as the collision energy decreases at lower RHIC-BES energies. We have also shown that this departure from equilibrium reduces towards central collisions, and strange particle equilibration may happen after a threshold number of participants in A - A collision.





2021 ◽  
Vol 103 (2) ◽  
Author(s):  
Sumana Bhattacharyya ◽  
Amaresh Jaiswal ◽  
Sutanu Roy


2021 ◽  
Vol 57 (2) ◽  
Author(s):  
Hui-Xiao Duan ◽  
Dong-Hai Zhang ◽  
Fan Zhang ◽  
Hai-Shun Wu


2021 ◽  
Vol 57 (2) ◽  
Author(s):  
O. V. Vitiuk ◽  
K. A. Bugaev ◽  
E. S. Zherebtsova ◽  
D. B. Blaschke ◽  
L. V. Bravina ◽  
...  

AbstractThe recently developed hadron resonance gas model with multicomponent hard-core repulsion is used to address and resolve the long standing problem to describe the light nuclear cluster multiplicities including the hyper-triton measured by the STAR Collaboration, known as the hyper-triton chemical freeze-out puzzle. An improved description for the hadronic and light nuclear cluster data measured by STAR at the collision energy $$\sqrt{s_{NN}} =200$$ s NN = 200 GeV and by ALICE at $$\sqrt{s_{NN}} =2.76$$ s NN = 2.76 TeV is obtained. This is achieved by applying a new strategy of analyzing the light nuclear cluster data and by using the value for the hard-core radius of the (anti-)$$\varLambda $$ Λ hyperons found in earlier work. One of the most striking results of the present work is that for the most probable scenario of chemical freeze-out for the STAR energy the obtained parameters allow to simultaneously reproduce the values of the experimental ratios $$S_3$$ S 3 and $${\overline{S}}_3$$ S ¯ 3 which were not included in the fit.



2021 ◽  
Vol 57 (2) ◽  
Author(s):  
K. Gallmeister ◽  
C. Greiner

AbstractThe physical processes behind the production of light nuclei in heavy ion collisions are unclear. The successful theoretical description of experimental yields by thermal models conflicts with the very small binding energies of the observed states, being fragile in such a hot and dense environment. Other available ideas are delayed production via coalescence, or a cooling of the system after the chemical freeze-out according to a Saha equation, or a ‘quench’ instead of a thermal freeze-out. A recently derived prescription of an (interacting) Hagedorn gas is applied to consolidate the above pictures. The tabulation of decay rates of Hagedorn states into light nuclei allows to calculate yields usually inaccessible due to very poor Monte Carlo statistics. Decay yields of stable hadrons and light nuclei are calculated. While the scale-free decays of Hagedorn states alone are not compatible with the experimental data, a thermalized hadron and Hagedorn state gas is able to describe the experimental data. Applying a cooling of the system according to a Saha-equation with conservation of nucleon and anti-nucleon numbers leads to (nearly) temperature independent yields, thus a production of the light nuclei at temperatures much lower than the chemical freeze-out temperature is compatible with experimental data and with the statistical hadronization model.



2021 ◽  
Vol 1005 ◽  
pp. 121865
Author(s):  
Paolo Alba ◽  
Rene Bellwied ◽  
Valentina Mantovani-Sarti ◽  
Jacquelyn Noronha-Hostler ◽  
Paolo Parotto ◽  
...  


Author(s):  
Boris E. Grinyuk ◽  
Kyrill A. Bugaev ◽  
Violetta V. Sagun ◽  
Oleksii I. Ivanytskyi ◽  
Dmitry L. Borisyuk ◽  
...  

From the analysis of light (anti)nuclei multiplicities that were measured recently by the ALICE collaboration in Pb+Pb collisions at the center-of-mass collision energy [Formula: see text][Formula: see text]TeV, there arose a highly nontrivial question about the excluded volume of composite particles. Surprisingly, the hadron resonance gas model (HRGM) is able to perfectly describe the light (anti) nuclei multiplicities under various assumptions. Thus, one can consider the (anti)nuclei with a vanishing hard-core radius (as the point-like particles) or with the hard-core radius of proton, but the fit quality is the same for these assumptions. It is clear, however, that such assumptions are unphysical. Hence we obtain a formula for the classical excluded volume of loosely bound light nuclei consisting of A baryons. To implement a new formula into the HRGM, we have to modify the induced surface tension concept to treat the hadrons and (anti)nuclei on the same footing. We perform a thorough analysis of hadronic and (anti)nuclei multiplicities measured by the ALICE collaboration. The HRGM with the induced surface tension allows us to verify different assumptions on the values of hard-core radii and different scenarios of chemical freeze-out of (anti)nuclei. It is shown that the unprecedentedly high quality of fit [Formula: see text] is achieved, if the chemical freeze-out temperature of hadrons is about [Formula: see text][Formula: see text]MeV, while the one for all (anti)nuclei is [Formula: see text][Formula: see text]MeV.



Sign in / Sign up

Export Citation Format

Share Document