17O Quadrupole Dips in Ammonium Persulphate

1994 ◽  
Vol 49 (1-2) ◽  
pp. 345-350 ◽  
Author(s):  
N. F. Peirson ◽  
J. A. S. Smith ◽  
D. Stephenson

Abstract The magnetic field dependence of the 1H spin-lattice relaxation time in ammonium persulphate shows pronounced minima near the 1H magnetic resonance frequencies of 1,200 and 2,200 kHz. These are interpreted in terms of a model involving cross-relaxation between 1H in the NH4 ion and 17O in natural abundance in the S2O2-8 ions, the latter having a much shorter spin-lattice relaxation time. A theoretical analysis of the shape of the minima is used to derive values for the 17O quadrupole parameters. This analysis results in best estimate values for the quadrupole coupling constant of 6.75 (± 0.05) MHz and an asymmetry of 0.30 (± 0.02). Such values are indicative o f O-H hydrogen bonding and suggest the S2O2-8 ion is not undergoing rapid reorientation at temperatures below 320 K.

1978 ◽  
Vol 39 (C6) ◽  
pp. C6-1215-C6-1216
Author(s):  
H. Ahola ◽  
G.J. Ehnholm ◽  
S.T. Islander ◽  
B. Rantala

1978 ◽  
Vol 56 (10) ◽  
pp. 1386-1389
Author(s):  
Marie D'Iorio ◽  
Robin L. Armstrong

The pressure-induced polymorphic phase transition at about 4 k bar in rubidium iodide was studied using nuclear magnetic resonance. The signature of the structural transition is a loss of echo intensity which presumably is due to an increase in the number of lattice defects as a result of the transition. The ratio of the spin–spin relaxation times of the iodine nuclei in the two phases is in agreement with the ratio predicted by a second moment calculation. The actual experimental values, however, are considerably smaller than the theoretical predictions signifying the migration of lattice defects. Estimates of the iodine spin–lattice relaxation time at atmospheric pressure indicate the necessity to include both an anharmonic Raman contribution and a covalency factor. The change in spin–lattice relaxation time with pressure as measured in the low pressure phase is dominated by the change in the lattice parameter. At the critical pressure the spin–lattice relaxation time decreases by a fractional amount which is approximately equal to the fractional volume change characterizing the transition. The pressure derivative of the spin–lattice relaxation time in the high pressure phase is nearly equal to that in the low pressure phase.


Sign in / Sign up

Export Citation Format

Share Document