Solitons, Bäcklund Transformation, Lax Pair, and Infinitely Many Conservation Law for a (2+1)-Dimensional Generalised Variable-Coefficient Shallow Water Wave Equation

2016 ◽  
Vol 71 (1) ◽  
pp. 69-79 ◽  
Author(s):  
Zhong-Zhou Lan ◽  
Yi-Tian Gao ◽  
Jin-Wei Yang ◽  
Chuan-Qi Su ◽  
Da-Wei Zuo

AbstractUnder investigation in this article is a (2+1)-dimensional generalised variable-coefficient shallow water wave equation, which describes the interaction of the Riemann wave propagating along the y axis with a long-wave propagating along the x axis in a fluid, where x and y are the scaled space coordinates. Bilinear forms, Bäcklund transformation, Lax pair, and infinitely many conservation law are derived based on the binary Bell polynomials. Multi-soliton solutions are constructed via the Hirota method. Propagation and interaction of the solitons are illustrated graphically: (i) variable coefficients affect the shape of the multi-soliton interaction in the scaled space and time coordinates. (ii) Positions of the solitons depend on the sign of wave numbers after each interaction. (iii) Interaction of the solitons is elastic, i.e. the amplitude, velocity, and shape of each soliton remain invariant after each interaction except for a phase shift.

2017 ◽  
Vol 31 (22) ◽  
pp. 1750126 ◽  
Author(s):  
Qian-Min Huang ◽  
Yi-Tian Gao

Under investigation in this letter is a variable-coefficient (3[Formula: see text]+[Formula: see text]1)-dimensional generalized shallow water wave equation. Bilinear form and Bäcklund transformation are obtained. One-, two- and three-soliton solutions are derived via the Hirota bilinear method. Interaction and propagation of the solitons are discussed graphically. Stability of the solitons is studied numerically. Soliton amplitude is determined by the spectral parameters. Soliton velocity is not only related to the spectral parameters, but also to the variable coefficients. Phase shifts are the only difference between the two-soliton solutions and the superposition of the two relevant one-soliton solutions. Numerical investigation on the stability of the solitons indicates that the solitons could resist the disturbance of small perturbations and propagate steadily.


2017 ◽  
Vol 31 (03) ◽  
pp. 1750012 ◽  
Author(s):  
Ya-Le Wang ◽  
Yi-Tian Gao ◽  
Shu-Liang Jia ◽  
Zhong-Zhou Lan ◽  
Gao-Fu Deng ◽  
...  

Under investigation in this paper is a (2[Formula: see text]+[Formula: see text]1)-dimensional generalized variable-coefficient shallow water wave equation which can be reduced to several integrable equations, such as the Korteweg–de Vries (KdV) equation and the Calogero–Bogoyavlenskii–Schiff (CBS) equation. Bilinear forms, Bäcklund transformation, Lax pair and infinite conservation laws are derived based on the binary Bell polynomials. N-soliton solutions are constructed via the Hirota method. Propagation and interaction of the solitons are illustrated graphically: (i) variable coefficients affect the shape of the N-soliton interaction in the scaled space and time coordinates; (ii) positions of the solitons depend on the sign of wave numbers after each interaction; (iii) interaction of the solitons is elastic, i.e. the amplitude, velocity and shape of each soliton remain invariant after each interaction except for a phase shift.


2016 ◽  
Vol 30 (32n33) ◽  
pp. 1650383 ◽  
Author(s):  
Xue-Hui Zhao ◽  
Bo Tian ◽  
Jun Chai ◽  
Yu-Xiao Wu ◽  
Yong-Jiang Guo

Under investigation in this paper is a generalized variable-coefficient Boussinesq system, which describes the propagation of the shallow water waves in the two-layered fluid flow. Bilinear forms, Bäcklund transformation and Lax pair are derived by virtue of the Bell polynomials. Hirota method is applied to construct the one- and two-soliton solutions. Propagation and interaction of the solitons are illustrated graphically: kink- and bell-shape solitons are obtained; shapes of the solitons are affected by the variable coefficients [Formula: see text], [Formula: see text] and [Formula: see text] during the propagation, kink- and anti-bell-shape solitons are obtained when [Formula: see text], anti-kink- and bell-shape solitons are obtained when [Formula: see text]; Head-on interaction between the two bidirectional solitons, overtaking interaction between the two unidirectional solitons are presented; interactions between the two solitons are elastic.


Sign in / Sign up

Export Citation Format

Share Document