Ab-Initio Molecular Dynamics Simulations and Calculations of Spectroscopic Parameters in Hydrogen-Bonding Liquids in Confinement (Project 8)

2018 ◽  
Vol 232 (7-8) ◽  
pp. 973-987 ◽  
Author(s):  
Daniel Sebastiani

Abstract We investigate the effect of several nanoscale confinements on structural and dynamical properties of liquid water and binary aqueous mixtures. By means of molecular dynamics simulations based on density functional theory and atomistic force fields. Our main focus is on the dependence on the structure and the hydrogen-bonding-network of the liquids near the confinement interface at atomistic resolution. As a complementary aspect, spatially resolved profiles of the proton NMR chemical shift values are used to quantify the local strength of the hydrogen-bond-network.

2018 ◽  
Vol 20 (36) ◽  
pp. 23717-23725 ◽  
Author(s):  
Vesa Hänninen ◽  
Garold Murdachaew ◽  
Gilbert M. Nathanson ◽  
R. Benny Gerber ◽  
Lauri Halonen

Ab initio molecular dynamics simulations of formic acid (FA) dimer colliding with liquid water at 300 K have been performed using density functional theory.


Author(s):  
Lijuan Meng ◽  
Jinlian Lu ◽  
Yujie Bai ◽  
Lili Liu ◽  
Tang Jingyi ◽  
...  

Understanding the fundamentals of chemical vapor deposition bilayer graphene growth is crucial for its synthesis. By employing density functional theory calculations and classical molecular dynamics simulations, we have investigated the...


2020 ◽  
Vol 22 (12) ◽  
pp. 6690-6697 ◽  
Author(s):  
Aman Jindal ◽  
Sukumaran Vasudevan

Hydrogen bonding OH···O geometries in the liquid state of linear alcohols, derived from ab initio MD simulations, show no change from methanol to pentanol, in contrast to that observed in their crystalline state.


Sign in / Sign up

Export Citation Format

Share Document