Sweat Loss and Fluid Intake of Female Varsity Ice Hockey Players During On-Ice Practices and Games

2020 ◽  
Vol 34 (2) ◽  
pp. 389-395
Author(s):  
Jessica L. Bigg ◽  
Alexander S.D. Gamble ◽  
Tyler F. Vermeulen ◽  
Lindsey M. Bigg ◽  
Lawrence L. Spriet
2011 ◽  
Vol 36 (1) ◽  
pp. 145-152 ◽  
Author(s):  
Heather M. Logan-Sprenger ◽  
Matthew S. Palmer ◽  
Lawrence L. Spriet

Research in many sports suggests that losing ∼2% of body mass (BM) through sweating impairs athletic performance, although this has not been tested in ice hockey players. This study investigated pregame hydration, and on-ice sweat loss, fluid intake, and sodium (Na+) balance of elite male junior players during an ice hockey game. Twenty-four players (2 goalies, 7 defensemen, 15 forwards) volunteered to participate in the study (age, 18.3 ± 0.3 years; weight, 86.5 ±1.6 kg; height, 184.1 ± 1.3 cm). Players were weighed pre- and postgame, fluid and sodium intake were monitored throughout the game, and fluid and Na+ balance were determined within the time between BM measurements. Sweat Na+ loss was calculated based on sweat loss and sweat [Na+] determined from sweat-patch analysis on the same players during an intense practice. Players arrived at the rink in a euhydrated state and drank 0.6 ± 0.1 L of fluid before the game. Mean playing time for the forwards was 18:85 ± 1:15 min:s and playing time for the defense was 24:00 ± 2:46 min:s. Sweat loss was 3.2 ± 0.2 L and exceeded net fluid intake (2.1 ± 0.1 L). Mean BM loss was 1.3% ± 0.3%, with 8/24 players losing between 1.8% to 4.3% BM. Players preferred to drink water and a carbohydrate electrolyte solution before the game and during intermissions, while only water was consumed during each period. Practice mean forehead sweat [Na+] was 74 mmol·L–1. Estimated sweat Na+ losses of 3.1 ± 0.4 g (∼8 g NaCl) coupled with low Na+ intake of 0.8 ± 0.2 g (∼2 g NaCl) resulted in a significant Na+ deficit by the end of the game. This study demonstrated that despite abundant opportunities to hydrate during a hockey game, one-third of the players did not drink enough fluid to prevent sweat losses of 2% BM or higher. Losing 2% BM has been associated with decreases in athletic performance.


2019 ◽  
Vol 40 (06) ◽  
pp. 416-422 ◽  
Author(s):  
Jessica Lynne Bigg ◽  
Alexander Shand Davis Gamble ◽  
Tyler Fredrick Vermeulen ◽  
Stephanie Michelle Boville ◽  
Greg S. Eskedjian ◽  
...  

AbstractThis study measured sweat losses, voluntary fluid intake, sodium balance, and carbohydrate intake of female ice hockey players during on-ice practices at the Olympic, varsity, and recreational levels. Testing was conducted on 25 Canadian Olympic players, 21 varsity, and 21 recreational players. The average sweat rate for the Olympic players (0.99±0.08 L/h) was significantly greater than both the varsity (0.67±0.05 L/h, p=0.001) and the recreational players (0.42±0.03 L/h, p<0.001), and the varsity players also had a significantly greater sweat rate than the recreational athletes (p=0.016). Total fluid intake was significantly greater for both the Olympic (p=0.001) and varsity players (p=0.007) compared to the recreational group. Only 3 of 25 Olympic players lost>1.5% BM and 4 others lost>1% BM, with no players in both the varsity and recreational teams losing>1% BM. Half of the Olympic players consumed some carbohydrate during practice, but most of the varsity and recreational players did not. In conclusion, sweat rates in female ice hockey players during practices were proportional to competitive level. Fluid intake was similar between groups and resulted in only a few athletes at the Olympic level being at risk of excess body mass loss.


2010 ◽  
Vol 35 (3) ◽  
pp. 328-335 ◽  
Author(s):  
Matthew S. Palmer ◽  
Heather M. Logan ◽  
Lawrence L. Spriet

This study evaluated the repeatability of hydration and sweat measurements taken during on-ice hockey practices with players drinking only water, and determined whether having only a carbohydrate–electrolyte solution (CES) to drink during practices decreased fluid intake or affected other hydration and (or) sweat measures. All testing was conducted on elite players of an Ontario Hockey League team (±SE; mean age, 17.6 ± 0.3 years; mean height, 182.9 ± 1.4 cm; mean body mass, 83.0 ± 1.7 kg). Players were studied 3 times over the course of 6 weekly on-ice practices (±SE; mean playing time, 1.58 ± 0.07 h; mean temperature, 11.4 ± 0.8 °C; mean relative humidity, 52% ± 3%). There was strong repeatability of the measured hydration and sweat parameters between 2 similar on-ice practices when players drank only water. Limiting the players to drinking only a CES (as opposed to water) did not decrease fluid intake during practice (±SE; mean CES intake, 0.72 ± 0.07 L·h–1 vs. mean water intake, 0.82 ± 0.08 L·h–1) or affect sweat rate (1.5 ± 0.1 L·h–1 vs. 1.5 ± 0.1 L·h–1), sweat sodium concentration (72.4 ± 5.6 mmol·L–1 vs. 73.0 ± 4.4 mmol·L–1), or percent body mass loss (1.1% ± 0.2% vs. 0.9% ± 0.2%). Drinking a CES also improved sodium balance (–2.1 ± 0.2 g·h–1 vs. –2.6 ± 0.3 g·h–1) and provided the players with a significant carbohydrate (43 ± 4 g·h–1 vs. 0 ± 0 g·h–1) during practice. In summary, a single field sweat test during similar on-ice hockey practices in male junior hockey players is sufficient to evaluate fluid and electrolyte balance. Also, a CES does not affect voluntary fluid intake during practice, compared with water, in these players. The CES provided some salt to offset the salt lost in sweat, and carbohydrate, which may help maintain physical and mental performance in the later stages of practice.


2019 ◽  
Vol 14 (2) ◽  
pp. 153-161 ◽  
Author(s):  
Sarah Hutchinson ◽  
Paul Ellison ◽  
Andrew Levy ◽  
David Marchant

Objective Concussion is a common injury in ice hockey, and previous research suggests some misconceptions and unsafe attitudes amongst players. The purpose of this study was to assess sport concussion knowledge, attitudes and the effect of sport concussion history in UK-based male ice hockey players across three levels of competition: professional, semi-professional and amateur. Methods Sixty-one participants across a number of UK ice hockey teams completed the Rosenbaum Concussion Knowledge and Attitudes Survey and reviewed a series of statements to assess knowledge (concussion knowledge index), attitudes (concussion attitude index) and misconceptions of concussion. Results Level of competition and concussion history had no significant effect on concussion knowledge index or concussion attitude index. A positive significant relationship exists between playing experience and concussion knowledge index and concussion attitude index. Statements identified common misconceptions and areas of accurate knowledge regarding concussion symptoms suggesting that male ice hockey players have a higher level knowledge compared to a sample of the UK general public. Playing experience was associated with increased knowledge and increasingly safe attitudes towards concussion. Conclusion Despite knowledge relating to loss of consciousness and correct management of symptoms being generally accurate, there are worryingly unsafe attitudes regarding aspects of concussion. Such attitudes may well pose significant threats to players’ safety and long-term health.


JAMA ◽  
1990 ◽  
Vol 263 (22) ◽  
pp. 3024-3025
Author(s):  
K. Hedberg ◽  
K. L. MacDonald ◽  
M. Osterholm ◽  
C. Hedberg ◽  
K. White

Sign in / Sign up

Export Citation Format

Share Document