Guide for Nondestructive Testing of the Composite Overwraps in Filament Wound Pressure Vessels Used in Aerospace Applications

2021 ◽  
Author(s):  
2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Rifat Hossain ◽  
Jason P. Carey ◽  
Pierre Mertiny

Axially symmetric fiber-reinforced polymer composite structures, such as pressure vessels and piping, are being widely used in different industrial applications where combined loading conditions may be applied. It is imperative to determine a suitable fiber angle, or a distribution of fiber angles, along the longitudinal direction of the structure in order to achieve best performance in terms of mechanical behavior and strength for structures subjected to combined loadings. To this end, an approach combining netting analysis and Tsai-Wu failure theory was employed as a design tool to assess critical fiber angles at which applied loadings would cause a structure to fail. Together, the proposed netting analysis and failure theory-based approach constitute a simple, expedient, and convenient design process for complex-shaped structures.


2011 ◽  
pp. 1-5
Author(s):  
S.T. Peters

Abstract Most filament winding machines now have computer controls and at least three axes. Winding with four axes is increasingly common because the shapes of the products have evolved to include more complexity. The automation used on the winding machine and ancillary components does not eliminate the need for proper fiber handling. This chapter is a primer on modern filament winding equipment and its use, starting with an overview of machine control and then discussing the design and structural analysis of filament wound components such as pressure vessels, pipes, grid structures, deep sea oil platform drill risers, high-speed rotors, and filament-wound preforms.


Sign in / Sign up

Export Citation Format

Share Document