scholarly journals Timing Determines Tuning: A Rapid Spatial Transformation in Superior Colliculus Neurons during Reactive Gaze Shifts

eNeuro ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. ENEURO.0359-18.2019 ◽  
Author(s):  
Morteza Sadeh ◽  
Amirsaman Sajad ◽  
Hongying Wang ◽  
Xiaogang Yan ◽  
John Douglas Crawford
1994 ◽  
Vol 71 (1) ◽  
pp. 429-432 ◽  
Author(s):  
M. T. Wallace ◽  
B. E. Stein

1. The synthesis of information from different sensory modalities in the superior colliculus is an important precursor of attentive and orientation behavior. 2. This integration of multisensory information is critically dependent on inputs from a small area of association cortex, the anterior ectosylvian sulcus. Removal of these corticotectal influences can have a remarkably specific effect: it can eliminate multisensory integration in superior colliculus neurons while leaving their responses to unimodal cues intact. 3. Apparently, some of the associative functions of cortex are accomplished via its target neurons in the midbrain.


2003 ◽  
Vol 90 (2) ◽  
pp. 1046-1062 ◽  
Author(s):  
Janet O. Helminski ◽  
Mark A. Segraves

Extracellular recordings were made simultaneously in the frontal eye field and superior colliculus in awake, behaving rhesus monkeys. Frontal eye field microstimulation was used to orthodromically activate the superior colliculus both to locate the depth of the strongest frontal eye field input to the superior colliculus and to identify superior colliculus neurons receiving direct frontal eye field input. The activity of orthodromically driven colliculus neurons was characterized during visuomotor tasks. The purpose of this study was to identify the types of superior colliculus neurons that receive excitatory frontal eye field input. We found that microstimulation of the frontal eye field did not activate the superficial layers of the superior colliculus but did activate the deeper layers. This pattern of activation coincided with the prevalence of visual versus saccade-related activity in the superficial and deep layers. A total of 83 orthodromically driven superior colliculus neurons were identified. Of these neurons, 93% ( n = 77) exhibited a burst of activity associated with the onset of the saccade, and 25% ( n = 21) exhibited prelude/build-up activity prior to the onset of a saccade. In addition, it was common to see some activity synchronized with the onset of a visual target (30%, n = 25). In single neurons, these activity profiles could be observed alone or in combination. Superior colliculus neurons that were exclusively visual, however, were not excited by frontal eye field stimulation. We compared the activity of superior colliculus neurons that received frontal eye field input to descriptions of saccade-related neurons made in earlier reports and found that the distribution of neuron types in the orthodromically driven population was similar to the distribution within the overall population. This suggests that the frontal eye field does not selectively influence a specific class of collicular neurons, but, instead has a direct influence on all preparatory, and saccade-related activity within the deep layers of the superior colliculus.


1975 ◽  
Vol 38 (2) ◽  
pp. 301-312 ◽  
Author(s):  
C. W. Oyster ◽  
E. S. Takahashi

It has been shown that cells in the superficial layers of the superior colliculus exhibit response decrements when a visual stimulus is repeated. These response decrements have some of the properties associated with habituation, in particular, 1) spontaneous recovery and 2) habituation rate dependent on stimulus frequency. These observations have been made in two classes of neurons; direction-selective cells and so-called modified concentric cells. All of these neurons had small receptive fields and well-defined response properties. Some neurons in both the direction-selective and modified concentric groups do not show habituation. On the basis of area-threshold curves and other observations, it is suggested that those neurons which habituate possess strong inhibitory inputs which are weak or lacking in thenonhabituating neurons. This generalization leads to a hypothesis that inhibition in the superior colliculus has a long decay time and that a response to a given stimulus is affected by inhibition activated by preceding stimuli.


Sign in / Sign up

Export Citation Format

Share Document