scholarly journals Role of Actin in Anchoring Postsynaptic Receptors in Cultured Hippocampal Neurons: Differential Attachment of NMDA versus AMPA Receptors

1998 ◽  
Vol 18 (7) ◽  
pp. 2423-2436 ◽  
Author(s):  
Daniel W. Allison ◽  
Vladimir I. Gelfand ◽  
Ilan Spector ◽  
Ann Marie Craig
2011 ◽  
Vol 385 (2) ◽  
pp. 171-180 ◽  
Author(s):  
Frank Henle ◽  
Martina Dehmel ◽  
Jost Leemhuis ◽  
Catharina Fischer ◽  
Dieter K. Meyer

1999 ◽  
Vol 81 (3) ◽  
pp. 1225-1230 ◽  
Author(s):  
Kimmo Jensen ◽  
Morten Skovgaard Jensen ◽  
John D. C. Lambert

Role of presynaptic L-type Ca2+ channels in GABAergic synaptic transmission in cultured hippocampal neurons. Using dual whole cell patch-clamp recordings of monosynaptic GABAergic inhibitory postsynaptic currents (IPSCs) in cultured rat hippocampal neurons, we have previously demonstrated posttetanic potentiation (PTP) of IPSCs. Tetanic stimulation of the GABAergic neuron leads to accumulation of Ca2+ in the presynaptic terminals. This enhances the probability of GABA-vesicle release for up to 1 min, which underlies PTP. In the present study, we have examined the effect of altering the probability of release on PTP of IPSCs. Baclofen (10 μM), which depresses presynaptic Ca2+ entry through N- and P/Q-type voltage-dependent Ca2+ channels (VDCCs), caused a threefold greater enhancement of PTP than did reducing [Ca2+]o to 1.2 mM, which causes a nonspecific reduction in Ca2+ entry. This finding prompted us to investigate whether presynaptic L-type VDCCs contribute to the Ca2+ accumulation in the boutons during spike activity. The L-type VDCC antagonist, nifedipine (10 μM), had no effect on single IPSCs evoked at 0.2 Hz but reduced the PTP evoked by a train of 40 Hz for 2 s by 60%. Another L-type VDCC antagonist, isradipine (5 μM), similarly inhibited PTP by 65%. Both L-type VDCC blockers also depressed IPSCs during the stimulation (i.e., they increased tetanic depression). The L-type VDCC “agonist” (−)BayK 8644 (4 μM) had no effect on PTP evoked by a train of 40 Hz for 2 s, which probably saturated the PTP process, but enhanced PTP evoked by a train of 1 s by 91%. In conclusion, the results indicate that L-type VDCCs do not participate in low-frequency synchronous transmitter release, but contribute to presynaptic Ca2+ accumulation during high-frequency activity. This helps maintain vesicle release during tetanic stimulation and also enhances the probability of transmitter release during the posttetanic period, which is manifest as PTP. Involvement of L-type channels in these processes represents a novel presynaptic regulatory mechanism at fast CNS synapses.


2020 ◽  
Vol 13 (618) ◽  
pp. eaaw6923 ◽  
Author(s):  
Matej Hotka ◽  
Michal Cagalinec ◽  
Karlheinz Hilber ◽  
Livia Hool ◽  
Stefan Boehm ◽  
...  

L-type voltage-gated Ca2+ channels (LTCCs) are implicated in neurodegenerative processes and cell death. Accordingly, LTCC antagonists have been proposed to be neuroprotective, although this view is disputed, because intentional LTCC activation can also have beneficial effects. LTCC-mediated Ca2+ influx influences mitochondrial function, which plays a crucial role in the regulation of cell viability. Hence, we investigated the effect of modulating LTCC-mediated Ca2+ influx on mitochondrial function in cultured hippocampal neurons. To activate LTCCs, neuronal activity was stimulated by increasing extracellular K+ or by application of the GABAA receptor antagonist bicuculline. The activity of LTCCs was altered by application of an agonistic (Bay K8644) or an antagonistic (isradipine) dihydropyridine. Our results demonstrated that activation of LTCC-mediated Ca2+ influx affected mitochondrial function in a bimodal manner. At moderate stimulation strength, ATP synthase activity was enhanced, an effect that involved Ca2+-induced Ca2+ release from intracellular stores. In contrast, high LTCC-mediated Ca2+ loads led to a switch in ATP synthase activity to reverse-mode operation. This effect, which required nitric oxide, helped to prevent mitochondrial depolarization and sustained increases in mitochondrial Ca2+. Our findings indicate a complex role of LTCC-mediated Ca2+ influx in the tuning and maintenance of mitochondrial function. Therefore, the use of LTCC inhibitors to protect neurons from neurodegeneration should be reconsidered carefully.


Neuron ◽  
2001 ◽  
Vol 29 (1) ◽  
pp. 243-254 ◽  
Author(s):  
Wei-Yang Lu ◽  
Heng-Ye Man ◽  
William Ju ◽  
William S. Trimble ◽  
John F. MacDonald ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document