postsynaptic receptors
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 16)

H-INDEX

28
(FIVE YEARS 2)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Taisuke Miyazaki ◽  
Megumi Morimoto-Tomita ◽  
Coralie Berthoux ◽  
Kotaro Konno ◽  
Yoav Noam ◽  
...  

Ionotropic neurotransmitter receptors at postsynapses mediate fast synaptic transmission upon binding of the neurotransmitter. Post- and trans-synaptic mechanisms through cytosolic, membrane, and secreted proteins have been proposed to localize neurotransmitter receptors at postsynapses. However, it remains unknown which mechanism is crucial to maintain neurotransmitter receptors at postsynapses. In this study, we ablated excitatory or inhibitory neurons in adult mouse brains in a cell-autonomous manner. Unexpectedly, we found that excitatory AMPA receptors remain at the postsynaptic density upon ablation of excitatory presynaptic terminals. In contrast, inhibitory GABAA receptors required inhibitory presynaptic terminals for their postsynaptic localization. Consistent with this finding, ectopic expression at excitatory presynapses of neurexin 3alpha, a putative trans-synaptic interactor with the native GABAA receptor complex, could recruit GABAA receptors to contacted postsynaptic sites. These results establish distinct mechanisms for the maintenance of excitatory and inhibitory postsynaptic receptors in the mature mammalian brain.


2021 ◽  
Author(s):  
Xiaoting Li ◽  
Gabriel Hémond ◽  
Antoine G. Godin ◽  
Nicolas Doyon

AbstractNanocolumns are trans-synaptic structures which align presynaptic vesicles release sites and postsynaptic receptors. However, how these nano structures shape synaptic signaling remains little understood. Given the difficulty to probe submicroscopic structures experimentally, computer modelling is a usefull approach to investigate the possible functional impacts of nanocolumns. In our in silico model, as has been experimentally observed, a nanocolumn is characterized by a tight distribution of postsynaptic receptors aligned with the presynaptic vesicle release site and by the presence of trans-synaptic molecules which can modulate neurotransmitter diffusion. We found that nanocolumns can play an important role in reinforcing synaptic current mostly when the presynaptic vesicle contains a small number of neurotransmitters. We also show that synapses with and without nanocolumns could have differentiated responses to spontaneous or evoked events. Our work provides a new methodology to investigate in silico the role of the submicroscopic organization of the synapse.Author summaryNeurotransmitter release, diffusion, and binding to postsynaptic receptors are key steps in synaptic transmission. However, the submicroscopic arrangement of receptors and presynaptic sites of neurotransmitter release remains little investigated. Experimental observations revealed the presence of trans-synaptic nanocolumns which span both the pre and post synaptic sites and fine tune the position of the post synaptic receptors. The functional impact of these nanocolumns (i.e. their influence on synaptic current) is both little understood and difficult to investigate experimentally. Here we construct a novel in silico model to investigate the functional impact of nanocolumns and show that they could play a functional role in reinforcing weak synapses.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Diego Zelada ◽  
Francisco J. Barrantes ◽  
Juan Pablo Henríquez

AbstractLithium chloride has been widely used as a therapeutic mood stabilizer. Although cumulative evidence suggests that lithium plays modulatory effects on postsynaptic receptors, the underlying mechanism by which lithium regulates synaptic transmission has not been fully elucidated. In this work, by using the advantageous neuromuscular synapse, we evaluated the effect of lithium on the stability of postsynaptic nicotinic acetylcholine receptors (nAChRs) in vivo. We found that in normally innervated neuromuscular synapses, lithium chloride significantly decreased the turnover of nAChRs by reducing their internalization. A similar response was observed in CHO-K1/A5 cells expressing the adult muscle-type nAChRs. Strikingly, in denervated neuromuscular synapses, lithium led to enhanced nAChR turnover and density by increasing the incorporation of new nAChRs. Lithium also potentiated the formation of unstable nAChR clusters in non-synaptic regions of denervated muscle fibres. We found that denervation-dependent re-expression of the foetal nAChR γ-subunit was not altered by lithium. However, while denervation inhibits the distribution of β-catenin within endplates, lithium-treated fibres retain β-catenin staining in specific foci of the synaptic region. Collectively, our data reveal that lithium treatment differentially affects the stability of postsynaptic receptors in normal and denervated neuromuscular synapses in vivo, thus providing novel insights into the regulatory effects of lithium on synaptic organization and extending its potential therapeutic use in conditions affecting the peripheral nervous system.


2021 ◽  
Vol 69 (2) ◽  
Author(s):  
Sandro Rostelato-Ferreira ◽  
Orlando B. Vettorazzo ◽  
Natália Tribuiani ◽  
Allan P. Leal ◽  
Cháriston A. Dal Belo ◽  
...  

Introduction: Rhinella schneideri is a toad widely distributed in South America and its poison is characterized by inducing cardiotoxicity and neurotoxicity. Objective: In this work, we investigated pharmacological strategies to attenuate the peripheral neurotoxicity induced by R. schneideri poison in avian neuromuscular preparation. Methods: The experiments were carried out using isolated chick biventer cervicis preparation subjected to field stimulation for muscle twitches recordings or exposed to acetylcholine and potassium chloride for contracture responses. Results: Poison (10 μg/ml) produced complete neuromuscular blockade in chick biventer cervicis preparation within approximately 70 min incubation (times for 50 and 90 % blockade: 15 ± 3 min and 40 ± 2 min, respectively; P < 0.05, N= 5); contracture responses to exogenous acetylcholine and KCl were unaffected by poison indicating no specificity with postsynaptic receptors or myotoxicity, respectively. Poison (10 μg/ml)-induced neuromuscular blockade was not prevented by heparin (5 and 150 IU/ml) under pre- or post-treatment conditions. Incubation at low temperature (23-25 °C) abolished the neuromuscular blockade; after raising the temperature to 37 °C, the complete neuromuscular blockade was slightly slower than that seen in preparations directly incubated at 37 °C (times for 50 and 90 % blockade: 23 ± 2 min and 60 ± 2.5 min, respectively; P < 0.05, N= 4). Neostigmine (3.3 μM) did not reverse the neuromuscular blockade in BC preparation whereas 3,4-diaminopyridine (91.6 μM) produced a partial and sustained reversal of the twitch responses (29 ± 7.8 % of maximal reversal reached in approximately 40 min incubation; P < 0.05, N= 4). Conclusions: R. schneideri poison induces potent peripheral neurotoxicity in vitro which can be partially reversible by 3,4-diaminopyridine.


2021 ◽  
Vol 118 (3) ◽  
pp. e2022580118
Author(s):  
Yuko Fukata ◽  
Xiumin Chen ◽  
Satomi Chiken ◽  
Yoko Hirano ◽  
Atsushi Yamagata ◽  
...  

Physiological functioning and homeostasis of the brain rely on finely tuned synaptic transmission, which involves nanoscale alignment between presynaptic neurotransmitter-release machinery and postsynaptic receptors. However, the molecular identity and physiological significance of transsynaptic nanoalignment remain incompletely understood. Here, we report that epilepsy gene products, a secreted protein LGI1 and its receptor ADAM22, govern transsynaptic nanoalignment to prevent epilepsy. We found that LGI1–ADAM22 instructs PSD-95 family membrane-associated guanylate kinases (MAGUKs) to organize transsynaptic protein networks, including NMDA/AMPA receptors, Kv1 channels, and LRRTM4–Neurexin adhesion molecules. Adam22ΔC5/ΔC5 knock-in mice devoid of the ADAM22–MAGUK interaction display lethal epilepsy of hippocampal origin, representing the mouse model for ADAM22-related epileptic encephalopathy. This model shows less-condensed PSD-95 nanodomains, disordered transsynaptic nanoalignment, and decreased excitatory synaptic transmission in the hippocampus. Strikingly, without ADAM22 binding, PSD-95 cannot potentiate AMPA receptor-mediated synaptic transmission. Furthermore, forced coexpression of ADAM22 and PSD-95 reconstitutes nano-condensates in nonneuronal cells. Collectively, this study reveals LGI1–ADAM22–MAGUK as an essential component of transsynaptic nanoarchitecture for precise synaptic transmission and epilepsy prevention.


2020 ◽  
Author(s):  
Marisa M. Brockmann ◽  
Estelle Toulme ◽  
Andreas T. Grasskamp ◽  
Thorsten Trimbuch ◽  
Thomas C. Südhof ◽  
...  

SummaryNeuronal synapses transduce information via the consecutive action of three transducers: voltage-gated Ca2+-channels, fusion-competent synaptic vesicles, and postsynaptic receptors. Their physical distance is thought to influence the speed and efficiency of neurotransmission. However, technical limitations have hampered resolving their nanoscale arrangement. Here, we developed a new method for live-labeling proteins for electron microscopy (EM), revealing that release-competent vesicles preferentially align with Ca2+-channels and postsynaptic AMPA receptors within 20-30 nm and thereby forming a transsynaptic tripartite nanocomplex. Using functional EM, we show that single action potentials cause vesicles within the nanocomplex to fuse with a 50% probability. The loss of the presynaptic scaffold disrupts the formation of the tripartite transducers. Strikingly, the forced transsynaptic alignment of the Ca2+-channel subunit α2δ1 and AMPA receptors suffice to restore neurotransmission in a scaffold lacking synapse. Our results demonstrate a synaptic transducer nanocomplex that actively contributes to the organization of central synapses.


2020 ◽  
pp. 096032712097582
Author(s):  
Wei Sun ◽  
Xiaoliang Li ◽  
Dongxin Tang ◽  
Yuanhua Wu ◽  
Lei An

Although melamine exposure induces cognitive deficits and dysfunctional neurotransmission in hippocampal Cornus Ammonis (CA) 1 region of rats, it is unclear whether the neural function, such as neural oscillations between hippocampal CA3–CA1 pathway and postsynaptic receptors involves in these effects. The levels of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) subunit glutamate receptor (GluR) 1 and GluR2/3 in CA1 region of melamine-treated rats, which were intragastric treated with 300 mg/kg/day for 4 weeks, were detected. Following systemic or intra-hippocampal CA1 injection with GluR2/3 agonist, spatial learning of melamine-treated rats was assessed in Morris water maze (MWM) task. Local field potentials were recorded in CA3–CA1 pathway before and during behavioral test. General Partial Directed Coherence approach was applied to determine directionality of neural information flow between CA3 and CA1 regions. Results showed that melamine exposure reduced GluR2/3 but not GluR1 level and systemic or intra-hippocampal CA1 injection with GluR2/3 agonist effectively mitigated the learning deficits. Phase synchronization between CA3 and CA1 regions were significantly diminished in delta, theta and alpha oscillations. Coupling directional index and strength of CA3 driving CA1 were marked reduced as well. Intra-hippocampal CA1 infusion with GluR2/3 agonist significantly enhanced the phase locked value and reversed the melamine-induced reduction in the neural information flow (NIF) from CA3 to CA1 region. These findings support that melamine exposure decrease the expression of GluR2/3 subunit involved in weakening directionality index of NIF, and thereby induced spatial learning deficits.


Author(s):  
Thomas Boraud

This chapter discusses the modalities of information transfer in the nervous system. The nervous system is organised around specialised cells called neurons, which work as integration units that transform all received information into new information. The neurons generate unitary electric pulses of invariant form and duration called action potentials or spikes. Neurons have an intrinsic firing frequency that is their frequency of producing spikes when they are not influenced. The chapter then considers the two major families of neurotransmitters. In general, a neuron releases only one type of neurotransmitter belonging to one of these two families. The first family is that of excitatory neurotransmitters; the neurons that release them are naturally called excitatory neurons. When they bind with postsynaptic receptors, they have a facilitating effect on the production of action potentials. Meanwhile, inhibitory neurons release neurotransmitters whose binding with postsynaptic receptors decreases the discharge frequency of the postsynaptic neuron. The chapter also describes a special family of neurotransmitters: the neuro-modulators.


2020 ◽  
Author(s):  
Andreas T. Grasskamp ◽  
Meida Jusyte ◽  
Anthony W. McCarthy ◽  
Torsten W.B. Götz ◽  
Alexander M. Walter

AbstractSynaptic transmission relies on presynaptic neurotransmitter (NT) release from synaptic vesicles (SVs), and on NT detection by postsynaptic receptors. Two principal modes exist: action-potential (AP) evoked and AP-independent “spontaneous” transmission. Though universal to all synapses and essential for neural development and function, regulation of spontaneous transmission remains enigmatic. Mechanisms divergent from AP-evoked transmission were described, but are difficult to reconcile with its established function in adjusting AP-evoked transmission. By studying neurotransmission at individual synapses of Drosophila larval neuromuscular junctions (NMJs), we show a clear interdependence of transmission modes: Components of the AP-evoked NT-release machinery (Unc13, Syntaxin-1 and BRP) also predicted spontaneous transmission. Both modes were reduced when blocking voltage-gated calcium channels and engaged an overlapping pool of SVs and NT-receptors. While a small subset (~21%) of spontaneously active synapses appeared limited to this mode, most also mediated AP-evoked transmission and activity was highly correlated. Thus, by engaging overlapping molecular machinery, spontaneous transmission predicts AP-evoked transmission at single synapses.


2020 ◽  
Vol 318 (6) ◽  
pp. H1387-H1400
Author(s):  
Jesse L. Ashton ◽  
Liam Argent ◽  
Joscelin E. G. Smith ◽  
Sangjun Jin ◽  
Gregory B. Sands ◽  
...  

We have developed intracardiac neuron whole cell recording techniques in atrial preparations from control and spontaneous hypertensive rats. This has enabled the identification of significant synaptic plasticity in the intracardiac nervous system, including enhanced postsynaptic current frequency, increased synaptic terminal density, and altered postsynaptic receptors. This increased synaptic drive together with altered cardiac neuron electrophysiology could increase intracardiac nervous system excitability and contribute to the substrate for atrial arrhythmia in hypertensive heart disease.


Sign in / Sign up

Export Citation Format

Share Document