scholarly journals Coding of Sound Envelopes by Inhibitory Rebound in Neurons of the Superior Olivary Complex in the Unanesthetized Rabbit

1999 ◽  
Vol 19 (6) ◽  
pp. 2273-2287 ◽  
Author(s):  
Shigeyuki Kuwada ◽  
Ranjan Batra
1995 ◽  
Vol 74 (6) ◽  
pp. 2469-2486 ◽  
Author(s):  
D. C. Fitzpatrick ◽  
S. Kuwada ◽  
R. Batra ◽  
C. Trahiotis

1. In most natural environments, sound waves from a single source will reach a listener through both direct and reflected paths. Sound traveling the direct path arrives first, and determines the perceived location of the source despite the presence of reflections from many different locations. This phenomenon is called the "law of the first wavefront" or "precedence effect." The time at which the reflection is first perceived as a separately localizable sound defines the end of the precedence window and is called "echo threshold." The precedence effect represents an important property of the auditory system, the neural basis for which has only recently begun to be examined. Here we report the responses of single neurons in the inferior colliculus (IC) and superior olivary complex (SOC) of the unanesthetized rabbit to a sound and its simulated reflection. 2. Stimuli were pairs of monaural or binaural clicks delivered through earphones. The leading click, or conditioner, simulated a direct sound, and the lagging click, or probe, simulated a reflection. Interaural time differences (ITDs) were introduced in the binaural conditioners and probes to adjust their simulated locations. The probe was always set at the neuron's best ITD, whereas the conditioner was set at the neuron's best ITD or its worst ITD. To measure the time course of the effects of the conditioner on the probe, we examined the response to the probe as a function of the conditioner-probe interval (CPI). 3. When IC neurons were tested with conditioners and probes set at the neuron's best ITD, the response to the probe as a function of CPI had one of two forms: early-low or early-high. In early-low neurons the response to the probe was initially suppressed but recovered monotonically at longer CPIs. Early-high neurons showed a nonmonotonic recovery pattern. In these neurons the maximal suppression did not occur at the shortest CPIs, but rather after a period of less suppression. Beyond this point, recovery was similar to that of early-low neurons. The presence of early-high neurons meant that the overall population was never entirely suppressed, even at short CPIs. Taken as a whole. CPIs for 50% recovery of the response to the probe among neurons ranged from 1 to 64 ms with a median of approximately 6 ms. 4. The above results are consistent with the time course of the precedence effect for the following reasons. 1) The lack of complete suppression at any CPI is compatible with behavioral results that show the presence of a probe can be detected even at short CPIs when it is not separately localizable. 2) At a CPI corresponding to echo threshold for human listeners (approximately 4 ms CPI) there was a considerable response to the probe, consistent with it being heard as a separately localizable sound at this CPI. 3) Full recovery for all neurons required a period much longer than that associated with the precedence effect. This is consistent with the relatively long time required for conditioners and probes to be heard with equal loudness. 5. Conditioners with either the best ITD or worst ITD were used to determine the effect of ITD on the response to the probe. The relative amounts of suppression caused by the two ITDs varied among neurons. Some neurons were suppressed about equally by both types of conditioners, others were suppressed more by a conditioner with the best ITD, and still others by a conditioner with the worst ITD. Because the best ITD and worst ITD presumably activate different pathways, these results suggest that different neurons receive a different balance of inhibition from different sources. 6. The recovery functions of neurons not sensitive to ITDs were similar to those of ITD-sensitive, neurons. This suggests that the time course of suppression may be common among different IC populations. 7. We also studied neurons in the SOC. Although many showed binaural interactions, none were sensitive to ITDs. Thus the response of this population may not be


2006 ◽  
Vol 221 (1-2) ◽  
pp. 1-16 ◽  
Author(s):  
Charles S. Coffey ◽  
Charles S. Ebert ◽  
Allen F. Marshall ◽  
John D. Skaggs ◽  
Stephanie E. Falk ◽  
...  

2006 ◽  
Vol 95 (3) ◽  
pp. 1309-1322 ◽  
Author(s):  
Shigeyuki Kuwada ◽  
Douglas C. Fitzpatrick ◽  
Ranjan Batra ◽  
Ernst-Michael Ostapoff

Interaural time differences, a cue for azimuthal sound location, are first encoded in the superior olivary complex (SOC), and this information is then conveyed to the dorsal nucleus of the lateral lemniscus (DNLL) and inferior colliculus (IC). The DNLL provides a strong inhibitory input to the IC and may serve to transform the coding of interaural time differences (ITDs) in the IC. Consistent with the projections from the SOC, the DNLL and IC had similar distributions of peak- and trough-type neurons, characteristic delays, and best ITDs. The ITD tuning widths of DNLL neurons were intermediate between those of the SOC and IC. Further sharpening is seen in the auditory thalamus, indicating that sharpening mechanisms are not restricted to the midbrain. The proportion of neurons that phase-locked to the tones delivered to each ear progressively decreased from the SOC to the auditory thalamus. The degree of phase-locking for a large majority of DNLL neurons was too weak to support their involvement in processing monaural inputs to generate a sensitivity to ITDs. The response rates of DNLL neurons were on average ∼60% greater than in the IC or SOC, indicating that the inhibitory input provided to the IC by the DNLL is robust.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Moritz Herbert Albrecht Köhler ◽  
Gianpaolo Demarchi ◽  
Nathan Weisz

AbstractBackgroundA long-standing debate concerns where in the processing hierarchy of the central nervous system (CNS) selective attention takes effect. In the auditory system, cochlear processes can be influenced via direct and mediated (by the inferior colliculus) projections from the auditory cortex to the superior olivary complex (SOC). Studies illustrating attentional modulations of cochlear responses have so far been limited to sound-evoked responses. The aim of the present study is to investigate intermodal (audiovisual) selective attention in humans simultaneously at the cortical and cochlear level during a stimulus-free cue-target interval.ResultsWe found that cochlear activity in the silent cue-target intervals was modulated by a theta-rhythmic pattern (~ 6 Hz). While this pattern was present independently of attentional focus, cochlear theta activity was clearly enhanced when attending to the upcoming auditory input. On a cortical level, classical posterior alpha and beta power enhancements were found during auditory selective attention. Interestingly, participants with a stronger release of inhibition in auditory brain regions show a stronger attentional modulation of cochlear theta activity.ConclusionsThese results hint at a putative theta-rhythmic sampling of auditory input at the cochlear level. Furthermore, our results point to an interindividual variable engagement of efferent pathways in an attentional context that are linked to processes within and beyond processes in auditory cortical regions.


2005 ◽  
Vol 94 (6) ◽  
pp. 3826-3835 ◽  
Author(s):  
Joshua S. Green ◽  
Dan H. Sanes

Despite the peripheral and central immaturities that limit auditory processing in juvenile animals, they are able to lateralize sounds using binaural cues. This study explores a central mechanism that may compensate for these limitations during development. Interaural time and level difference processing by neurons in the superior olivary complex depends on synaptic inhibition from the medial nucleus of the trapezoid body (MNTB), a group of inhibitory neurons that is activated by contralateral sound stimuli. In this study, we examined the maturation of coding properties of MNTB neurons and found that they receive an inhibitory influence from the ipsilateral ear that is modified during the course of postnatal development. Single neuron recordings were obtained from the MNTB in juvenile (postnatal day 15–19) and adult gerbils. Approximately 50% of all recorded MNTB neurons were inhibited by ipsilateral sound stimuli, but juvenile neurons displayed a much greater suppression of firing as compared with those in adults. A comparison of the prepotential and postsynaptic action potential indicated that inhibition occurred at the presynaptic level, likely within the cochlear nucleus. A simple linear model of level difference detection by lateral superior olivary neurons that receive input from MNTB suggested that inhibition of the MNTB may expand the response of LSO neurons to physiologically realistic level differences, particularly in juvenile animals, at a time when these cues are reduced.


Sign in / Sign up

Export Citation Format

Share Document